Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingqing Chen is active.

Publication


Featured researches published by Yingqing Chen.


Biochimica et Biophysica Acta | 2015

Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway

Hyo Jeong Kim; Yeonsoo Joe; Jae Kyoung Yu; Yingqing Chen; Sun Oh Jeong; Nithya Mani; Gyeong Jae Cho; Hyun-Ock Pae; Stefan W. Ryter; Hun Taeg Chung

Hepatic ischemia/reperfusion (I/R) injury can arise as a complication of liver surgery and transplantation. Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, modulates inflammation and apoptosis in response to oxidative stress. SIRT1, which is regulated by p53 and microRNA-34a (miR-34a), can modulate non-alcoholic fatty liver disease, fibrosis and cirrhosis. Since carbon monoxide (CO) inhalation can protect against hepatic I/R, we hypothesized that CO could ameliorate hepatic I/R injury by regulating the miR-34a/SIRT1 pathway. Livers from mice pretreated with CO, or PFT, a p53 inhibitor, displayed reduced production of pro-inflammatory mediators, including TNF-α, iNOS, interleukin (IL)-6, and IL-1β after hepatic I/R injury. SIRT1 expression was increased by CO or PFT in the liver after I/R, whereas acetylated p65, p53 levels, and miR-34a expression were decreased. CO increased SIRT1 expression by inhibiting miR-34a. Both CO and PFT diminished pro-inflammatory cytokines production in vitro. Knockdown of SIRT1 in LPS-stimulated macrophages increased NF-κB acetylation, and increased pro-inflammatory cytokines. CO treatment reduced miR-34a expression and increased SIRT1 expression in oxidant-challenged hepatocytes; and rescued SIRT1 expression in p53-expressing or miR-34a transfected cells. In response to CO, enhanced SIRT1 expression mediated by miR-34a inhibition protects against liver damage through p65/p53 deacetylation, which may mediate inflammatory responses and hepatocellular apoptosis. The miR-34a/SIRT1 pathway may represent a therapeutic target for hepatic injury.


Oxidative Medicine and Cellular Longevity | 2013

Carbon monoxide attenuates dextran sulfate sodium-induced colitis via inhibition of GSK-3β signaling.

Md. Jamal Uddin; Sun-oh Jeong; Min Zheng; Yingqing Chen; Gyeong Jae Cho; Hun Taeg Chung; Yeonsoo Joe

Endogenous carbon monoxide (CO) is produced by heme oxygenase-1 (HO)-1 which mediates the degradation of heme into CO, iron, and biliverdin. Also, CO ameliorates the human inflammatory bowel diseases and ulcerative colitis. However, the mechanism for the effect of CO on the inflammatory bowel disease has not yet been known. In this study, we showed that CO significantly increases survival percentage, body weight, colon length as well as histologic parameters in DSS-treated mice. In addition, CO inhalation significantly decreased DSS induced pro-inflammatory cytokines by inhibition of GSK-3β in mice model. To support the in vivo observation, TNF-α, iNOS and IL-10 after CO and LiCl treatment were measured in mesenteric lymph node cells (MLNs) and bone marrow-derived macrophages (BMMs) from DSS treated mice. In addition, we determined that CO potentially inhibited GSK-3β activation and decreased TNF-α and iNOS expression by inhibition of NF-κB activation in LPS-stimulated U937 and MLN cells pretreated with CO. Together, our findings indicate that CO attenuates DSS-induced colitis via inhibition of GSK-3β signaling in vitro and in vivo. Importantly, this is the first report that investigated the molecular mechanisms mediated the novel effects of CO via inhibition GSK-3β in DSS-induced colitis model.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis

Yeonsoo Joe; Min Zheng; Hyo Jeong Kim; Md. Jamal Uddin; Seul-Ki Kim; Yingqing Chen; Jeongmin Park; Gyeong Jae Cho; Stefan W. Ryter; Hun Taeg Chung

Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.


Free Radical Biology and Medicine | 2017

Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2α-ATF4 pathway

Hyo Jeong Kim; Yeonsoo Joe; Seul-Ki Kim; Seung Il Park; Jeongmin Park; Yingqing Chen; Jin Kim; Jinhyun Ryu; Gyeong Jae Cho; Young-Joon Surh; Stefan W. Ryter; Uh-Hyun Kim; Hun-Taeg Chung

Abstract Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has emerged as one of the most common causes of chronic liver disease in developed countries over the last decade. NAFLD comprises a spectrum of pathological hepatic changes, including steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Autophagy, a homeostatic process for protein and organelle turnover, is decreased in the liver during the development of NAFLD. Previously, we have shown that carbon monoxide (CO), a reaction product of heme oxygenase (HO) activity, can confer protection in NAFLD, though the molecular mechanisms remain unclear. We therefore investigated the mechanisms underlying the protective effect of CO on methionine/choline‐deficient (MCD) diet‐induced hepatic steatosis. We found that CO induced sestrin‐2 (SESN2) expression through enhanced mitochondrial ROS production and protected against MCD‐induced NAFLD progression through activation of autophagy. SESN2 expression was increased by CO or CO‐releasing molecule (CORM2), in a manner dependent on signaling through the protein kinase R‐like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor‐2 alpha (eIF2&agr;)/ activating transcription factor‐4 (ATF4)‐dependent pathway. CO‐induced SESN2 upregulation in hepatocytes contributed to autophagy induction through activation of 5’‐AMP‐activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR) complex I (mTORC1). Furthermore, we demonstrate that CO significantly induced the expression of SESN2 and enhanced autophagy in the livers of MCD‐fed mice or in MCD‐media treated hepatocytes. Conversely, knockdown of SESN2 abrogated autophagy activation and mTOR inhibition in response to CO. We conclude that CO ameliorates hepatic steatosis through the autophagy pathway induced by SESN2 upregulation. Graphical abstract Figure. No caption available. HighlightsCO induces sestrin‐2 expression in hepatocytes.CO leads to an increased sestrin‐2 expression through PREK‐eIF2&agr;‐ATF pathway.CO‐induced sestrin‐2 expression upregulates autophagy activation.CO alleviates hepatic steatosis in NAFLD.


American Journal of Pathology | 2015

Tristetraprolin Mediates Anti-Inflammatory Effects of Carbon Monoxide on Lipopolysaccharide-Induced Acute Lung Injury

Yeonsoo Joe; Seul-Ki Kim; Yingqing Chen; Jung Wook Yang; Jeong-Hee Lee; Gyeong Jae Cho; Jeong Woo Park; Hun Taeg Chung

Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.


PLOS ONE | 2014

Tristetraprolin Mediates Anti-Inflammatory Effect of Carbon Monoxide against DSS-Induced Colitis

Yeonsoo Joe; Md. Jamal Uddin; Min Zheng; Hyo Jeong Kim; Yingqing Chen; Nal Ae Yoon; Gyeong Jae Cho; Jeong Woo Park; Hun Taeg Chung

Endogenous carbon monoxide (CO) exerts anti-inflammatory effects. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts. Here we found that exogenous CO enhanced the decay of TNF-α mRNA and suppressed TNF-α expression in LPS-activated macrophages from wild-type (WT) mice. However, TTP deficiency abrogated the effects of exogenous CO. While CO treatment prior to DSS administration in WT mice significantly reduced inflammatory cytokine levels and colitis, it failed to reduce the pro-inflammatory cytokine levels and colitis in TTP knockout (KO) mice. Our results demonstrate that TTP is a key factor mediating the anti-inflammatory action of CO in DSS-induced colitis.


Cellular & Molecular Immunology | 2017

Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin

Seul-Ki Kim; Yeonsoo Joe; Yingqing Chen; Jinhyun Ryu; Jeong-Hee Lee; Gyeong Jae Cho; Stefan W. Ryter; Hun Taeg Chung

Carbon monoxide (CO) can act as an anti-inflammatory effector in mouse models of lung injury and disease, through the downregulation of pro-inflammatory cytokines production, though the underlying mechanisms remain unclear. The nucleotide-binding oligomerization domain-, leucine-rich region-, and pyrin domain-containing-3 (NLRP3) inflammasome is a protein complex that regulates the maturation and secretion of pro-inflammatory cytokines, including interleukin-1β (IL-1β). In this report, we show that the CO-releasing molecule (CORM-2) can stimulate the expression of pyrin, a negative regulator of the NLRP3 inflammasome. CORM-2 increased the transcription of pyrin in the human leukemic cell line (THP-1) in the absence and presence of lipopolysaccharide (LPS). In THP-1 cells, CORM-2 treatment dose-dependently reduced the activation of caspase-1 and the secretion of IL-1β, and increased the levels of IL-10, in response to LPS and adenosine 5′-triphosphate (ATP), an NLRP3 inflammasome activation model. Genetic interference of IL-10 by small interfering RNA (siRNA) reduced the effectiveness of CORM-2 in inhibiting IL-1β production and in inducing pyrin expression. Genetic interference of pyrin by siRNA increased IL-1β production in response to LPS and ATP, and reversed CORM-2-dependent inhibition of caspase-1 activation. CO inhalation (250 ppm) in vivo increased the expression of pyrin and IL-10 in lung and spleen, and decreased the levels of IL-1β induced by LPS. Consistent with the induction of pyrin and IL-10, and the downregulation of lung IL-1β production, CO provided protection in a model of acute lung injury induced by intranasal LPS administration. These results provide a novel mechanism underlying the anti-inflammatory effects of CO, involving the IL-10-dependent upregulation of pyrin expression.


Oxidative Medicine and Cellular Longevity | 2016

Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis

Yingqing Chen; Indira Pandiri; Yeonsoo Joe; Hyo Jeong Kim; Seul-Ki Kim; Jeongmin Park; Jinhyun Ryu; Gyeong Jae Cho; Jeong Woo Park; Stefan W. Ryter; Hun Taeg Chung

The selective type-3 phosphodiesterase inhibitor cilostazol and the antihyperlipidemic agent probucol have antioxidative, anti-inflammatory, and antiatherogenic properties. Moreover, cilostazol and probucol can regulate mitochondrial biogenesis. However, the combinatorial effect of cilostazol and probucol on mitochondrial biogenesis remains unknown. Endoplasmic reticulum (ER) stress is a well-known causative factor of nonalcoholic fatty liver disease (NAFLD) which can impair mitochondrial function in hepatocytes. Here, we investigated the synergistic effects of cilostazol and probucol on mitochondrial biogenesis and ER stress-induced hepatic steatosis. A synergistic effect of cilostazol and probucol on HO-1 and mitochondrial biogenesis gene expression was found in human hepatocellular carcinoma cells (HepG2) and murine primary hepatocytes. Furthermore, in an animal model of ER stress involving tunicamycin, combinatorial treatment with cilostazol and probucol significantly increased the expression of HO-1 and mitochondrial biogenesis-related genes and proteins, whereas it downregulated serum ALT, eIF2 phosphorylation, and CHOP expression, as well as the lipogenesis-related genes SREBP-1c and FAS. Based on these results, we conclude that cilostazol and probucol exhibit a synergistic effect on the activation of mitochondrial biogenesis via upregulation of HO-1, which confers protection against ER stress-induced hepatic steatosis.


Breast Cancer Research and Treatment | 2016

Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells

Indira Pandiri; Yingqing Chen; Yeonsoo Joe; Hyo Jeong Kim; Jeongmin Park; Hun Taeg Chung; Jeong Woo Park

Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin’s anti-proliferative activity in cancer cells.


Mediators of Inflammation | 2015

Carbon Monoxide Inhibits Tenascin-C Mediated Inflammation via IL-10 Expression in a Septic Mouse Model

Md. Jamal Uddin; Chun-Shi Li; Yeonsoo Joe; Yingqing Chen; Qinggao Zhang; Stefan W. Ryter; Hun Taeg Chung

Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammation in vitro and in vivo.

Collaboration


Dive into the Yingqing Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyeong Jae Cho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhyun Ryu

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge