Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeonsoo Joe is active.

Publication


Featured researches published by Yeonsoo Joe.


Innate Immunity | 2014

Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways

Sena Kim; Yeonsoo Joe; Sun Oh Jeong; Min Zheng; Sung Hoon Back; Sang Won Park; Stefan W. Ryter; Hun Taeg Chung

The mechanisms underlying pathophysiological states such as metabolic syndrome and obesity include endoplasmic reticulum (ER) stress and aberrant inflammatory responses. ER stress results from the accumulation of misfolded proteins during stress conditions. However, the precise mechanisms by which ER stress modulates inflammation remain incompletely understood. In this study, we hypothesized that ER stress alone could represent a sufficient signal for the modulation of inflammasome-dependent cytokine responses. We found that several ER stress-inducing chemicals and the free fatty acid palmitate can trigger IL-1β secretion in various cell types, including monocytic leukemia cells, primary macrophages and differentiated adipocytes. We show that ER stress primes cells for the expression of pro-IL-1β via NF-κB activation and promotes IL-1β secretion. Enhanced IL-1β secretion depended on the activation of the NLRP3 inflammasome through a mechanism involving reactive oxygen species formation and activation of thioredoxin-interacting protein. Chemical chaperone treatment and the pharmacological application of carbon monoxide inhibited IL-1β secretion in response to ER stress. Our results provide a mechanistic link between ER stress and the regulation of inflammation, and suggest that modulation of ER stress may provide a therapeutic opportunity to block progression of low grade chronic inflammation to metabolic syndrome.


Journal of Immunology | 2015

Endoplasmic Reticulum Stress–Induced IRE1α Activation Mediates Cross-Talk of GSK-3β and XBP-1 To Regulate Inflammatory Cytokine Production

Sena Kim; Yeonsoo Joe; Hyo Jeong Kim; You-Sun Kim; Sun Oh Jeong; Hyun-Ock Pae; Stefan W. Ryter; Young-Joon Surh; Hun Taeg Chung

IL-1β and TNF-α are important proinflammatory cytokines that respond to mutated self-antigens of tissue damage and exogenous pathogens. The endoplasmic reticulum (ER) stress and unfolded protein responses are related to the induction of proinflammatory cytokines. However, the detailed molecular pathways by which ER stress mediates cytokine gene expression have not been investigated. In this study, we found that ER stress–induced inositol-requiring enzyme (IRE)1α activation differentially regulates proinflammatory cytokine gene expression via activation of glycogen synthase kinase (GSK)-3β and X-box binding protein (XBP)-1. Surprisingly, IL-1β gene expression was modulated by IRE1α-mediated GSK-3β activation, but not by XBP-1. However, IRE1α-mediated XBP-1 splicing regulated TNF-α gene expression. SB216763, a GSK-3 inhibitor, selectively inhibited IL-1β gene expression, whereas the IRE1α RNase inhibitor STF083010 suppressed only TNF-α production. Additionally, inhibition of GSK-3β greatly increased IRE1α-dependent XBP-1 splicing. Our results identify an unsuspected differential role of downstream mediators GSK-3β and XBP-1 in ER stress–induced IRE1α activation that regulates cytokine production through signaling cross-talk. These results have important implications in the regulation of inflammatory pathways during ER stress, and they suggest novel therapeutic targets for diseases in which meta-inflammation plays a key role.


Journal of Pharmacology and Experimental Therapeutics | 2012

Salvianolic Acid B Exerts Vasoprotective Effects through the Modulation of Heme Oxygenase-1 and Arginase Activities

Yeonsoo Joe; Min Zheng; Hyo Jeong Kim; Sena Kim; Md. Jamal Uddin; Chul Park; Do Gon Ryu; Shin Sung Kang; Sungwoo Ryoo; Stefan W. Ryter; Ki Churl Chang; Hun Taeg Chung

Salvia miltiorrhiza (Danshen), a traditional Chinese herbal medicine, is commonly used for the prevention and treatment of cardiovascular disorders including atherosclerosis. However, the mechanisms responsible for the vasoprotective effects of Danshen remain largely unknown. Salvianolic acid B (Sal B) represents one of the most bioactive compounds that can be extracted from the water-soluble fraction of Danshen. We investigated the effects of Danshen and Sal B on the inflammatory response in murine macrophages. Danshen and Sal B both induced the expression of heme oxygenase-1 (HO-1) and inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Inhibition of HO activity using Sn-protoporphyrin-IX (SnPP) abolished the inhibitory effect of Sal B on NO production and iNOS expression. Sal B increased macrophage arginase activity in a dose-dependent manner and diminished LPS-inducible tumor necrosis factor-α production. These effects were also reversed by SnPP. These data suggest that HO-1 expression plays an intermediary role in the anti-inflammatory effects of Sal B. In contrast to the observations in macrophages, Sal B dose-dependently inhibited arginase activity in murine liver, kidney, and vascular tissue. Furthermore, Sal B increased NO production in isolated mouse aortas through the inhibition of arginase activity and reduction of reactive oxygen species production. We conclude that Sal B improves vascular function by inhibiting inflammatory responses and promoting endothelium-dependent vasodilation. Taken together, we suggest that Sal B may represent a potent candidate therapeutic for the treatment of cardiovascular diseases associated with endothelial dysfunction.


Nutrition & Metabolism | 2015

Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1

Chu-Sook Kim; Yoon‐Hee Kwon; Suck Young Choe; Sun Myung Hong; Hoon Yoo; Tsuyoshi Goto; Teruo Kawada; Hye Seon Choi; Yeonsoo Joe; Hun Taeg Chung; Rina Yu

BackgroundObesity-induced hepatic lipid accumulation causes lipotoxicity, mitochondrial dysfunction, oxidative stress, and insulin resistance, and is implicated in non-alcoholic hepatic pathologies such as steatohepatitis and fibrosis. Heme oxygenase-1 (HO-1), an important antioxidant enzyme catalyzing the rate-limiting step in heme degradation, protects against oxidative stress, inflammation, and metabolic dysregulation. Here, we demonstrate that the phytochemical, quercetin, a natural polyphenol flavonoid, protects against hepatic steatosis in obese mice fed a high-fat diet, and that it does so by inducing HO-1 and stimulating increased hepatic mitochondrial oxidative metabolism.MethodsMale C57BL/6 mice were fed a regular diet (RD), a high-fat diet (HFD), and an HFD supplemented with quercetin for 9 weeks. Levels of mitochondrial biogenesis and oxidative metabolic transcripts/proteins were measured by real-time PCR and/or Western blotting. HO-1 transcripts/proteins were measured real-time PCR and/or Western blotting.ResultsQuercetin upregulated genes involved in mitochondrial biogenesis and oxidative metabolism in lipid-laden hepatocytes and the livers of HFD-fed obese mice, and this was accompanied by increased levels of the transcription factor, nuclear erythroid 2-related factor 2 (Nrf-2), and HO-1 protein. The HO-1 inducer hemin and the HO-1 byproduct carbon monoxide (CO) also enhanced hepatic oxidative metabolism in HFD-fed obese mice. Moreover, the metabolic changes and the lipid-lowering effects of quercetin were completely blocked by the HO-1 inhibitor ZnPP and by deficiency of Nrf-2.ConclusionThese findings suggest that quercetin stimulates hepatic mitochondrial oxidative metabolism by inducing HO-1 via the Nrf-2 pathway. Quercetin may be useful in protecting against obesity-induced hepatosteatosis.


Cellular & Molecular Immunology | 2015

IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production

Jamal Uddin; Yeonsoo Joe; Seul-Ki Kim; Sun Oh Jeong; Stefan W. Ryter; Hyun-Ock Pae; Hun Taeg Chung

The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model.


Oxidative Medicine and Cellular Longevity | 2013

Quercetin Induces Mitochondrial Biogenesis through Activation of HO-1 in HepG2 Cells

Nabin Rayamajhi; Seul-Ki Kim; Hiroe Go; Yeonsoo Joe; Zak Callaway; Jae-Gu Kang; Stefan W. Ryter; Hun Taeg Chung

The regeneration of mitochondria by regulated biogenesis plays an important homeostatic role in cells and tissues and furthermore may provide an adaptive mechanism in certain diseases such as sepsis. The heme oxygenase (HO-1)/carbon monoxide (CO) system is an inducible cytoprotective mechanism in mammalian cells. Natural antioxidants can provide therapeutic benefit, in part, by inducing the HO-1/CO system. This study focused on the mechanism by which the natural antioxidant quercetin can induce mitochondrial biogenesis in HepG2 cells. We found that quercetin treatment induced expression of mitochondrial biogenesis activators (PGC-1α, NRF-1, TFAM), mitochondrial DNA (mtDNA), and proteins (COX IV) in HepG2 cells. The HO inhibitor SnPP and the CO scavenger hemoglobin reversed the effects of quercetin on mitochondrial biogenesis in HepG2 cells. The stimulatory effects of quercetin on mitochondrial biogenesis could be recapitulated in vivo in liver tissue and antagonized by SnPP. Finally, quercetin conferred an anti-inflammatory effect in the liver of mice treated with LPS and prevented impairment of mitochondrial biogenesis by LPS in vivo. These salutary effects of quercetin in vivo were also antagonized by SnPP. Thus, our results suggest that quercetin enhances mitochondrial biogenesis mainly via the HO-1/CO system in vitro and in vivo. The beneficial effects of quercetin may provide a therapeutic basis in inflammatory diseases and sepsis.


Antioxidants & Redox Signaling | 2012

Ethyl Pyruvate Induces Heme Oxygenase-1 Through p38 Mitogen-Activated Protein Kinase Activation by Depletion of Glutathione in RAW 264.7 Cells and Improves Survival in Septic Animals

Hwa Jin Jang; Young-Min Kim; Konstantin Tsoyi; Eun-Jung Park; Young Soo Lee; Hye Jung Kim; Jae Heun Lee; Yeonsoo Joe; Hun Taeg Chung; Ki Churl Chang

AIMS We investigated the molecular mechanism by which ethyl pyruvate (EP) induces heme oxygenase-1 (HO-1) in RAW 264.7 cells and its effect on survival rate in cecal ligation and puncture (CLP)-induced wild-type (WT) and HO-1 knockout (HO-1(-/-)) septic mice. RESULTS EP induced HO-1 in a dose- and time-dependent manner, which was mediated through p38 mitogen-activated protein kinase (MAPK) and NF-E2-related factor 2 (Nrf2) signaling cascade in RAW 264.7 cells. EP significantly inhibited the lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS) expression and high-mobility group box 1 (HMGB1) release in RAW 264.7 cells. The inhibitory effect of EP on LPS-stimulated iNOS expression and HMGB1 release was reversed by transfection with siHO-1RNA in RAW 264.7 cells, but EP failed to reduce them in HO-1(-/-) peritoneal macrophages treated with LPS. Moreover, treatment of cells with glutathione ethyl ester (GSH-Et), SB203580 (p38 MAPK inhibitor), siHO-1, or p38-siRNA transfection inhibited anti-inflammatory effect of EP. Interestingly, both HO-1 induction and phosphorylation of p38 by EP were reversed by GSH-Et, and antioxidant redox element-luciferase activity by EP was reversed by SB203580 in LPS-activated cells. EP increased survival and decreased serum HMGB1 in CLP-WT mice, whereas it did not increase survival or decrease circulating HMGB1 in HO-1(-/-) CLP-mice. INNOVATION AND CONCLUSION Our work provides new insights into the understanding the molecular mechanism by showing that EP induces HO-1 through a p38 MAPK- and NRF2-dependent pathway by decreasing GSH cellular levels. We conclude that EP inhibits proinflammatory response to LPS in macrophages and increases survival in CLP-induced septic mice by upregulation of HO-1 level, in which p38 MAPK and Nrf2 play an important role.


Biochimica et Biophysica Acta | 2015

Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway

Hyo Jeong Kim; Yeonsoo Joe; Jae Kyoung Yu; Yingqing Chen; Sun Oh Jeong; Nithya Mani; Gyeong Jae Cho; Hyun-Ock Pae; Stefan W. Ryter; Hun Taeg Chung

Hepatic ischemia/reperfusion (I/R) injury can arise as a complication of liver surgery and transplantation. Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, modulates inflammation and apoptosis in response to oxidative stress. SIRT1, which is regulated by p53 and microRNA-34a (miR-34a), can modulate non-alcoholic fatty liver disease, fibrosis and cirrhosis. Since carbon monoxide (CO) inhalation can protect against hepatic I/R, we hypothesized that CO could ameliorate hepatic I/R injury by regulating the miR-34a/SIRT1 pathway. Livers from mice pretreated with CO, or PFT, a p53 inhibitor, displayed reduced production of pro-inflammatory mediators, including TNF-α, iNOS, interleukin (IL)-6, and IL-1β after hepatic I/R injury. SIRT1 expression was increased by CO or PFT in the liver after I/R, whereas acetylated p65, p53 levels, and miR-34a expression were decreased. CO increased SIRT1 expression by inhibiting miR-34a. Both CO and PFT diminished pro-inflammatory cytokines production in vitro. Knockdown of SIRT1 in LPS-stimulated macrophages increased NF-κB acetylation, and increased pro-inflammatory cytokines. CO treatment reduced miR-34a expression and increased SIRT1 expression in oxidant-challenged hepatocytes; and rescued SIRT1 expression in p53-expressing or miR-34a transfected cells. In response to CO, enhanced SIRT1 expression mediated by miR-34a inhibition protects against liver damage through p65/p53 deacetylation, which may mediate inflammatory responses and hepatocellular apoptosis. The miR-34a/SIRT1 pathway may represent a therapeutic target for hepatic injury.


Journal of Biological Chemistry | 2011

Tristetraprolin Mediates Anti-inflammatory Effects of Nicotine in Lipopolysaccharide-stimulated Macrophages

Yeonsoo Joe; Hyo Jeong Kim; Sena Kim; Jiwha Chung; Myoung Seok Ko; Won Hyeok Lee; Ki Churl Chang; Jeong Woo Park; Hun Taeg Chung

Nicotine inhibits the release of TNF-α from macrophage through activation of STAT3. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts containing AU-rich elements (ARE) in 3′-untranslated region (3′-UTR). Here we show that in LPS-stimulated human macrophages the anti-inflammatory action of nicotine is mediated by TTP. Nicotine induced activation of STAT3 enhanced STAT3 binding to the TTP promoter, increased TTP promoter activity, and increased TTP expression resulting in the suppression of LPS-stimulated TNF-α production. Overexpression of a dominant negative mutant of STAT3 (R382W) or down-regulation of STAT3 by siRNA abolished nicotine-induced TTP expression and suppression of LPS-stimulated TNF-α production. Nicotine enhanced the decay of TNF-α mRNA and decreased luciferase expression of a TNF-α 3′-UTR reporter plasmid in U937 cells. However, siRNA to TTP abrogated these effects of nicotine. In this experiment, we are reporting for the first time the involvement of TTP in the cholinergic anti-inflammatory cascade consisting of nicotine-STAT3-TTP-dampening inflammation.


Blood | 2012

Pretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways

Da-Yong Shin; Jihwa Chung; Yeonsoo Joe; Hyun-Ock Pae; Ki Churl Chang; Gyeong Jae Cho; Stefan W. Ryter; Hun-Taeg Chung

The circulating peptide hormone hepcidin maintains systemic iron homeostasis. Hepcidin production increases during inflammation and as a result of endoplasmic reticulum (ER) stress. Elevated hepcidin levels decrease dietary iron absorption and promote iron sequestration in reticuloendothelial macrophages. Furthermore, increased plasma hepcidin levels cause hypoferremia and the anemia associated with chronic diseases. The signal transduction pathways that regulate hepcidin during inflammation and ER stress include the IL-6-dependent STAT-3 pathway and the unfolded protein response-associated cyclic AMP response element-binding protein-H (CREBH) pathway, respectively. We show that carbon monoxide (CO) suppresses hepcidin expression elicited by IL-6- and ER-stress agents by inhibiting STAT-3 phosphorylation and CREBH maturation, respectively. The inhibitory effect of CO on IL-6-inducible hepcidin expression is dependent on the suppressor of cytokine signaling-3 (SOCS-3) protein. Induction of ER stress in mice resulted in increased hepatic and serum hepcidin. CO administration inhibited ER-stress-induced hepcidin expression in vivo. Furthermore, ER stress caused iron accumulation in splenic macrophages, which could be prevented by CO. Our findings suggest novel anti-inflammatory therapeutic applications for CO, as well as therapeutic targets for the amelioration of anemia in the hypoferremic condition associated with chronic inflammatory and metabolic diseases.

Collaboration


Dive into the Yeonsoo Joe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyeong Jae Cho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Joon Surh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge