Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingru Zhang is active.

Publication


Featured researches published by Yingru Zhang.


Journal of Medicinal Chemistry | 2009

Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

Gretchen M. Schroeder; Yongmi An; Zhen-Wei Cai; Xiao-Tao Chen; Cheryl M. Clark; Lyndon A. M. Cornelius; Jun Dai; Johnni Gullo-Brown; Ashok Kumar Gupta; Benjamin Henley; John T. Hunt; Robert Jeyaseelan; Amrita Kamath; Kyoung S. Kim; Jonathan Lippy; Louis J. Lombardo; Veeraswamy Manne; Simone Oppenheimer; John S. Sack; Robert J. Schmidt; Guoxiang Shen; Kevin Stefanski; John S. Tokarski; George L. Trainor; Barri Wautlet; Donna D. Wei; David K. Williams; Yingru Zhang; Yueping Zhang; Joseph Fargnoli

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Drug Discovery Today | 2005

Enantioselective chromatography in drug discovery

Yingru Zhang; Dauh-Rurng Wu; David Wang-Iverson; Adrienne A. Tymiak

Molecular chirality is a fundamental consideration in drug discovery, one necessary to understand and describe biological targets as well as to design effective pharmaceutical agents. Enantioselective chromatography has played an increasing role not only as an analytical tool for chiral analyses, but also as a preparative technique to obtain pure enantiomers from racemates quickly from a wide diversity of chemical structures. Different enantioselective chromatography techniques are reviewed here, with particular emphasis on the most widespread high performance liquid chromatography (HPLC) and the rapidly emerging supercritical fluid chromatography (SFC) techniques. This review focuses on the dramatic advances in the chiral stationary phases (CSPs) that have made HPLC and SFC indispensable techniques for drug discovery today. In addition, screening strategies for rapid method development and considerations for laboratory-scale preparative separation are discussed and recent achievements are highlighted.


ACS Medicinal Chemistry Letters | 2015

Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors.

Ashvinikumar V. Gavai; Claude A. Quesnelle; Derek J. Norris; Wen-Ching Han; Patrice Gill; Weifang Shan; Aaron Balog; Ke Chen; Andrew J. Tebben; Richard Rampulla; Dauh-Rurng Wu; Yingru Zhang; Arvind Mathur; Ronald E. White; Anne Rose; Haiqing Wang; Zheng Yang; Asoka Ranasinghe; Celia D’Arienzo; Victor R. Guarino; Lan Xiao; Ching Su; Gerry Everlof; Vinod Arora; Ding Ren Shen; Mary Ellen Cvijic; Krista Menard; Mei-Li Wen; Jere E. Meredith; George L. Trainor

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.


Analytical Chemistry | 2014

Optimization and Simulation of Tandem Column Supercritical Fluid Chromatography Separations Using Column Back Pressure as a Unique Parameter

Chunlei Wang; Adrienne A. Tymiak; Yingru Zhang

Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.


Journal of Medicinal Chemistry | 2016

Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide (BMS-935177)

George V. De Lucca; Qing Shi; Qingjie Liu; Douglas G. Batt; Myra Beaudoin Bertrand; Rick Rampulla; Arvind Mathur; Lorell Discenza; Celia D’Arienzo; Jun Dai; Mary T. Obermeier; Rodney Vickery; Yingru Zhang; Zheng Yang; Punit Marathe; Andrew J. Tebben; Jodi K. Muckelbauer; ChiehYing J. Chang; Huiping Zhang; Kathleen M. Gillooly; Tracy L. Taylor; Mark A. Pattoli; Stacey Skala; Daniel W. Kukral; Kim W. McIntyre; Luisa Salter-Cid; Aberra Fura; James R. Burke; Joel C. Barrish; Percy H. Carter

Brutons tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.


ACS Medicinal Chemistry Letters | 2015

Dimeric Macrocyclic Antagonists of Inhibitor of Apoptosis Proteins for the Treatment of Cancer

Yong Zhang; Benjamin A. Seigal; Nicholas K. Terrett; Randy Talbott; Joseph Fargnoli; Joseph G. Naglich; Charu Chaudhry; Shana Posy; Ragini Vuppugalla; Georgia Cornelius; Ming Lei; Chunlei Wang; Yingru Zhang; Robert J. Schmidt; Donna D. Wei; Michael M. Miller; Martin Patrick Allen; Ling Li; Percy H. Carter; Gregory D. Vite; Robert M. Borzilleri

A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue 11, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound 11 demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule.


Xenobiotica | 2012

Impact of nonlinear midazolam pharmacokinetics on the magnitude of the midazolam-ketoconazole interaction in rats

Ragini Vuppugalla; Yingru Zhang; Shu-Ying Chang; Rodrigues Ad; Punit Marathe

Numerous groups have described the rat as an in vivo model for the assessment and prediction of drug–drug interactions (DDIs) in humans involving the inhibition of cytochrome P450 3A forms. Even for a well-established substrate-inhibitor pair like midazolam-ketoconazole, however, the magnitude of the DDI in rats (e.g. 1.5- to 5-fold) does not relate to what is observed clinically (e.g. 5- to 16-fold). Because nonlinear substrate pharmacokinetics (PK) may result in a weaker interaction, it was hypothesized that the lower magnitude of interaction observed in rats was due to the saturation of metabolic pathway(s) of midazolam at the doses used (10–20 mg/kg). Therefore, the inhibitory effects of ketoconazole were reevaluated at lower oral (1 and 5 mg/kg) and intravenous (IV) (1 mg/kg) doses of midazolam. In support of the hypothesis, oral exposure at 5 mg/kg dose of midazolam was 18-fold higher compared to that at 1 mg/kg. Furthermore, when the interaction was investigated at the lower midazolam dose (1 mg/kg), ketoconazole increased the IV and oral exposure of midazolam by 7-fold and 11-fold, respectively. A weaker DDI (1.5- to 1.8-fold) was observed at the higher oral midazolam dose. Collectively, these results suggest that the lower reported interaction in rats is likely due to saturation of midazolam clearance at the doses used. Therefore, when the rat is used as a DDI model to screen and differentiate compounds, or predict CYP3A inhibition in humans, it is important to use low doses of midazolam and ensure linear PK.


Journal of Organic Chemistry | 2015

Synthesis of Biologically Active Piperidine Metabolites of Clopidogrel: Determination of Structure and Analyte Development

Scott A. Shaw; Balu Balasubramanian; Samuel J. Bonacorsi; Janet Caceres Cortes; Kevin Cao; Bang-Chi Chen; Jun Dai; Carl P. Decicco; Animesh Goswami; Zhiwei Guo; Ronald L. Hanson; W. Griffith Humphreys; Patrick Y. S. Lam; Wenying Li; Arvind Mathur; Brad D. Maxwell; Quentin Michaudel; Li Peng; Andrew T. Pudzianowski; Feng Qiu; Shun Su; Dawn Sun; Adrienne A. Tymiak; Benjamin P. Vokits; Bei Wang; Ruth R. Wexler; Dauh-Rurng Wu; Yingru Zhang; Rulin Zhao; Phil S. Baran

Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.


Journal of Chromatography A | 2015

Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry.

Chunlei Wang; Sike Chen; John Brailsford; Aaron P. Yamniuk; Adrienne A. Tymiak; Yingru Zhang

Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid.


Journal of Chromatography B | 2008

Development and implementation of a stereoselective normal-phase liquid chromatography–tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes

Yingru Zhang; Christian Caporuscio; Jun Dai; Michael Witkus; Anne Rose; Joseph B. Santella; Celia D'Arienzo; David Wang-Iverson; Adrienne A. Tymiak

The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated with R2 > or =0.997. The precision of the analysis was <5% R.S.D. at or above the nominal concentration of 80 ng/mL, and <20% R.S.D. at 8 ng/mL. The mean bias was less than 15%. Extraction recovery and acceptable matrix interference were demonstrated using one isomer and the ketone, and better than 75% recovery and less than 25% ion suppression or interference were found. The method was successfully implemented for an in vitro intrinsic metabolic clearance study.

Collaboration


Dive into the Yingru Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Dai

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge