Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingwei Chen is active.

Publication


Featured researches published by Yingwei Chen.


Cellular Signalling | 2014

Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling.

Yongtao Xiao; Jun Wang; Yingwei Chen; Kejun Zhou; Jie Wen; Yang Wang; Ying Zhou; Weihua Pan; Wei Cai

An increasing body of evidence suggests that miRNAs are involved in fibrotic process of several organs including heart, lung and kidney. It has been observed recently that aberrant expression of miR-200s are associated with hepatic fibrosis. However, the role and underlying mechanism of miR-200s in hepatic fibrogenesis remains unknown. Here, we investigate the role of miR-200b in the activation of immortalized human hepatic stallate cells (HSCs), LX-2 cells. We firstly found that miR-200b significantly enhanced proliferation and migration of LX-2 cells. Secondly, our findings showed that miR-200b enhanced the phosphorylation of Akt, a downstream effector of phosphatidyl-inositol 3-Kinase (PI3K). FOG2, as the targets of fly miR-8 and human miR-200s, directly binds to p85α and inhibits the activation of the PI3K/Akt pathway. Here, we showed that FOG2 protein levels in LX-2 cells were suppressed significantly by miR-200b mimics. FOG2 knockdown by siRNAs activated the PI3K/Akt signaling, which increased cell growth and migration that mimicked the effect of miR-200b. Conversely, LY294002, a highly selective inhibitor of PI3K, could block phosphorylation of Akt and effect of miR-200b. In addition, we showed that miR-200b enhanced the expression of matrix metalloproteinase-2 (MMP-2), which may increase the migration of LX-2 cells. Finally, our results indicated that the expression of miR-200b was unregulated in the biliary atresia (BA) and associated with liver fibrotic progression. These data suggest a potential mechanism for Akt activation through FOG2 down-regulation by miR-200b that can lead to HSC growth and migration. In view of the putative pathogenic role of miR-200b in HSCs, miR-200b may constitute a potential marker for HSC activation and liver fibrosis progression.


Pediatric Research | 2015

The expression of epithelial-mesenchymal transition-related proteins in biliary epithelial cells is associated with liver fibrosis in biliary atresia

Yongtao Xiao; Ying Zhou; Yingwei Chen; Kejun Zhou; Jie Wen; Yang Wang; Jun Wang; Wei Cai

Background:The epithelial–mesenchymal transition (EMT) has been implicated as a key mechanism in the pathogenesis of liver fibrosis. The miR-200 family has been shown to inhibit EMT.Methods:Liver fibrosis levels were assessed with Masson’s trichrome staining of liver samples obtained from biliary atresia (BA) patients. The expressions of cytokeratin-7 (CK-7) and α-smooth muscle actin (α-SMA) in the liver sections were detected by immunohistochemical and immunofluorescent staining. EMTs were induced by transforming growth factor (TGF)-β1 in human biliary epithelial cells (BECs) in vitro.Results:We showed that the EMT-related proteins CK-7 and α-SMA colocalized to the intrahepatic BECs in the liver sections of patients with BA. The level of α-SMA expression was related to liver fibrosis stage in BA. EMT in primary human intrahepatic BECs was induced by TGF-β1 in vitro. miR-200b is one member of the miR-200 family and significantly inhibited TGF-β1-mediated EMT in BECs.Conclusion:Together, these data suggest that the occurrence of EMT in BECs might contribute to BA fibrosis. miR-200b significantly affects the development and progression of TGF-β1-dependent EMT and fibrosis in vitro.


BioMed Research International | 2017

New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease

Mingxia Zhou; Jing He; Yujie Shen; Cong Zhang; Jiazheng Wang; Yingwei Chen

Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohns disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.


Laboratory Investigation | 2015

Low doses of CMV induce autoimmune-mediated and inflammatory responses in bile duct epithelia of regulatory T cell-depleted neonatal mice

Jie Wen; Yongtao Xiao; Jun Wang; Weihua Pan; Ying Zhou; Xiaoling Zhang; Wenbin Guan; Yingwei Chen; Kejun Zhou; Yang Wang; Bisheng Shi; Xiaohui Zhou; Zhenghong Yuan; Wei Cai

Recent studies have indicated that perinatal infection with cytomegalovirus (CMV) may promote bile duct damage in biliary atresia (BA) and that the decreased regulatory T cell (Treg) percentage associated with BA may further amplify the bile duct damage. Although a majority of BA patients have had previous CMV infections and lower percentages of Tregs, it is unknown whether an initial exposure to a low dose of CMV could induce exaggerated and progressive biliary injury. A Treg-depleted neonatal mouse was infected with low-dose CMV (LD-CMV) as a model to study BA patients. LD-CMV infection in Treg-depleted mice induced extensive inflammation in both the intrahepatic and extrahepatic bile ducts, accompanied with injury to and atresia of intrahepatic bile ducts and partial obstruction of the extrahepatic bile ducts. Serum total and direct bilirubin amounts were also elevated. Evidence for the involvement of cellular and humoral autoimmune responses in LD-CMV-infection of Treg-depleted mice was also obtained through detection of increased percentages of CD3 and CD8 mononuclear cells and serum autoantibodies reactive to bile duct epithelial proteins, one of which was identified as α-enolase. Depletion of Tregs that can lead to the decreased inhibition of aberrantly activated hepatic T-lymphocytes and generation of autoantibodies may lead to further injury. Increased hepatic expression of Th1-related genes (TNF-α), IFN-γ-activated genes (STAT-1) and Th1 cytokines (TNF-α, lymphotactin, IL-12p40 and MIP −1γ) were also identified. In conclusion, autoimmune-mediated and inflammatory responses induced by LD-CMV infection in Treg-depleted mice results in increased intrahepatic and extrahepatic bile duct injury and contributed to disease progression.


International Journal of Molecular Sciences | 2017

Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-α Treated Cell Monolayers

Cong Zhang; Junkai Yan; Yongtao Xiao; Yujie Shen; Jiazheng Wang; Wensong Ge; Yingwei Chen

Tight junction dysfunction plays a vital role in some chronic inflammatory diseases. Pro-inflammatory cytokines, especially tumor necrosis factor alpha (TNF-α), act as important factors in intestinal epithelial tight junction dysfunction during inflammatory conditions. Autophagy has also been shown to be crucial in tight junction function and claudin-2 expression, but whether autophagy has an effect on the change of claudin-2 expression and tight junction function induced by TNF-α is still unknown. To answer this question, we examined the expression of claudin-2 protein, transepithelial electrical resistance (TER), and permeability of cell monolayers, autophagy flux change, and lysosomal pH after TNF-α with or without PP242 treatment. Our study showed that claudin-2 expression, intestinal permeability, microtubule-associated protein 1 light chain 3B II (LC3B-II) and sequestosome 1 (P62) expression largely increased while TER values decreased in TNF-α treated cell monolayers. Further research using 3-methyladenine (3-MA), bafilomycin A1, and ad-mCherry-GFP-LC3B adenovirus demonstrated that LC3B-II increase induced by TNF-α was attributed to the inhibition of autophagic degradation. Moreover, both qualitative and quantitative method confirmed the increase of lysosomal pH, and mammalian target of rapamycin (mTOR) inhibitor PP242 treatment relieved this elevation. Moreover, PP242 treatment also alleviated the change of autophagy flux, TER, and claudin-2 expression induced by TNF-α. Therefore, we conclude that increase of claudin-2 levels and intestinal epithelial tight junction dysfunction are partly caused by the inhibition of autophagic degradation in TNF-α treated cell monolayers.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

miR-200b inhibits TNFα-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro.

Yujie Shen; Min Zhou; Junkai Yan; Zi-Zhen Gong; Yongtao Xiao; Cong Zhang; Peng Du; Yingwei Chen

Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.


EBioMedicine | 2018

Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury

Mingxia Zhou; Weimin Xu; Jiazheng Wang; Junkai Yan; Yingying Shi; Cong Zhang; Wensong Ge; Jin Wu; Peng Du; Yingwei Chen

Background and aims Defective autophagy has been proposed as an important event in a growing number of autoimmune and inflammatory diseases such as rheumatoid arthritis and lupus. However, the precise role of mechanistic target of rapamycin (mTOR)-dependent autophagy and its underlying regulatory mechanisms in the intestinal epithelium in response to inflammation and oxidative stress remain poorly understood. Methods The levels of p-mTOR, LC3B, p62 and autophagy in mice and LPS-treated cells were examined by immunoblotting, immunohistochemistry, confocal microscopy and transmission electron microscopy (TEM). We evaluated the expression of IL-1β, IL-8, TNF-α, MDA, SOD and T-AOC by quantitative real time-polymerase chain reaction (qRT-PCR) and commercially available kits after silencing of mTOR and ATG5. In vivo modulation of mTOR and autophagy was achieved by using AZD8055, rapamycin and 3-methyladenine. Finally, to verify the involvement of TLR4 signalling and the NF-κB pathway in cells and active ulcerative colitis (UC) patients, immunofluorescence, qRT-PCR, immunoblotting and TEM were performed to determine TLR4 signalling relevance to autophagy and inflammation. Results The mTOR-dependent autophagic flux impairment in a murine model of colitis, human intestinal epithelial cells and active UC patients is probably regulated by TLR4-MyD88-MAPK signalling and the NF-κB pathway. Silencing mTOR remarkably attenuated, whereas inhibiting ATG5 aggravated, LPS-induced inflammation and oxidative injury. Pharmacological administration of mTOR inhibitors and autophagy stimulators markedly ameliorated experimental colitis and oxidative stress in vivo. Conclusions Our findings not only shed light on the regulatory mechanism of mTOR-dependent autophagy, but also provided potential therapeutic targets for intestinal inflammatory diseases such as refractory inflammatory bowel disease.


Molecular Medicine Reports | 2017

Identification of key pathways and genes in Barrett's esophagus using integrated bioinformatics methods

Cong Zhang; Yujie Shen; Jiazheng Wang; Mingxia Zhou; Yingwei Chen

Barretts esophagus (BE) is a premalignant lesion of esophageal adenocarcinoma. The aim of the present study was to investigate the possible mechanisms and biomarkers of BE. To identify the differentially expressed microRNAs (DEmiRNAs) and genes (DEGs) in BE, the miRNA expression profile GSE20099 and the gene expression profiles GSE26886, GSE13083 and GSE34619 were obtained from the Gene Expression Omnibus (GEO) database. DEGs and DEmiRNAs were screened for using the GEO2R tool. Using DAVID, functional and pathway enrichment analysis was performed to explore the biological function of identified DEGs. The protein-protein interaction (PPI) network was detected using STRING and constructed by Cytoscape software. Furthermore, targets of identified DEmiRNAs were predicted by the miRecords database, then integrated with the identified DEGs to obtain key genes involved in BE. In total, 311 DEGs were identified. These genes were significantly enriched in the pancreatic secretion, metabolic pathways and cytochrome P450 drug metabolism pathways. In the PPI network, 16 hub genes, including keratin 16, cystic fibrosis transmembrane conductance regulator, involucrin, protein kinase C α and cadherin 17 were identified. Following integration of the predicted target genes of DEmiRNAs with DEGs, three key BE genes were identified: PRKCA, CDH17 and epiregulin. In conclusion, a comprehensive bioinformatics analysis of identified DEGs and DEmiRNAs was performed to elucidate potential pathways and biomarkers involved in the development of BE.


Medicine | 2016

Hereditary pancreatitis of 3 Chinese children: Case report and literature review.

Li-Na Dai; Yingwei Chen; Weihui Yan; Lina Lu; Yijing Tao; Wei Cai

Background:Hereditary pancreatitis (HP) is quite rare and is distinguished by incomplete penetrance presentation as early-onset relapsing pancreatitis, usually beginning in childhood. HP is now known to be commonly relevant to mutations in the PRSS1 (gene-encoding cationic trypsinogen), SPINK1 (serine protease inhibitor, Kazal type 1), CFTR (cystic fibrosis), carboxypeptidase A1 (CPA1), and chymotrypsin C (CTRC) genes as reported in some Caucasian studies. HP has a variable spectrum of severity and may develop complications. Methods & Results:We describe the clinical course of 3 preschool children, hospitalized with postprandial abdominal pain, whose laboratory tests showed high serum amylase. Similar episodes of abdominal pain led to readmission, and the patients recovered quickly after using symptomatic therapy. The condition of the first boy, who developed a pancreatic tail pseudocyst and splenic infarction, was especially complicated. The boy underwent 2 endoscopic retrograde cholangiopancreatographies and stenting, along with a surgical procedure that completely relieved his symptoms for 3 months. The 3 patients and their parents were given genetic testing. All of the patients carried 1 or more gene mutations inherited from their mothers, fathers, or both parents; however, none of the parents were affected. Conclusion:For children with repeated pancreatitis, clinicians should consider HP in the differential diagnosis. It is reliable to perform gene sequencing on suspicious patients and their parents. Multidisciplinary and comprehensive treatment should be recommended to manage HP and its complications. Cholangiopancreatography and stenting is a relatively minimally invasive approach when compared with surgery and can be tried as an early intervention. Surgical procedures should be reserved for patients with complications.


Asia Pacific Journal of Clinical Nutrition | 2016

Parenteral nutrition combined with rice soup can be a safe and effective intervention for congenital chylous ascites

Yi Cao; Weihui Yan; Lina Lu; Yijing Tao; Wei Lu; Yingwei Chen; Qingya Tang; Wei Cai

Congenital chylous ascites in the neonatal period is a rare entity. Total parenteral nutrition (TPN), medium chain triglyceride (MCT)-based diet, octreotide and repeated paracentesis are regarded as appropriate medical treatment for congenital chylous ascites, and surgery is recommended when conservative therapy has failed. We present two cases in which ascites were confirmed via an abdominal sonogram and diagnostic paracentesis. In our clinical experience, rice soup combined with PN can be a safe and effective intervention.

Collaboration


Dive into the Yingwei Chen's collaboration.

Top Co-Authors

Avatar

Yongtao Xiao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Cai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Cong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Kejun Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jie Wen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Weihui Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yujie Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jiazheng Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge