Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingxiu Xu is active.

Publication


Featured researches published by Yingxiu Xu.


The Plant Cell | 2009

Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation

Jiaqiang Sun; Yingxiu Xu; Songqing Ye; Hongling Jiang; Qian Chen; Fang Liu; Wenkun Zhou; Rong Chen; Xugang Li; Olaf Tietz; Xiaoyan Wu; Jerry D. Cohen; Klaus Palme; Chuanyou Li

Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.


New Phytologist | 2011

Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein.

Jiaqiang Sun; Qian Chen; Linlin Qi; Hongling Jiang; Shuyu Li; Yingxiu Xu; Fang Liu; Wenkun Zhou; Jianwei Pan; Xugang Li; Klaus Palme; Chuanyou Li

The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 μM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 μM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 μM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 μM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.


Plant Molecular Biology | 2007

The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis

Hongmei Li; Jiaqiang Sun; Yingxiu Xu; Hongling Jiang; Xiaoyan Wu; Chuanyou Li

The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress. Here, we report that a nuclear-localized basic helix-loop-helix (bHLH)-type protein, AtAIB, positively regulates ABA response in Arabidopsis. The expression of AtAIB was transitorily induced by ABA and PEG, although its transcripts were accumulated in various organs. We provided evidence showing that AtAIB has transcriptional activation activity in yeast. Knockdown of AtAIB expression caused reduced sensitivity to ABA, whereas overexpression of this gene led to elevated sensitivity to ABA in cotyledon greening and seedling root growth. Furthermore, soil-grown plants overexpressing AtAIB showed increased drought tolerance. Taken together, these results suggested that AtAIB functions as a transcription activator involved in the regulation of ABA signaling in Arabidopsis.


Plant Physiology | 2006

Bestatin, an Inhibitor of Aminopeptidases, Provides a Chemical Genetics Approach to Dissect Jasmonate Signaling in Arabidopsis

Wenguang Zheng; Qingzhe Zhai; Jiaqiang Sun; Changbao Li; Lei Zhang; Hongmei Li; Xiaoli Zhang; Shuyu Li; Yingxiu Xu; Hongling Jiang; Xiaoyan Wu; Chuanyou Li

Bestatin, a potent inhibitor of some aminopeptidases, was shown previously to be a powerful inducer of wound-response genes in tomato (Lycopersicon esculentum). Here, we present several lines of evidence showing that bestatin specifically activates jasmonic acid (JA) signaling in plants. First, bestatin specifically activates the expression of JA-inducible genes in tomato and Arabidopsis (Arabidopsis thaliana). Second, the induction of JA-responsive genes by bestatin requires the COI1-dependent JA-signaling pathway, but does not depend strictly on JA biosynthesis. Third, microarray analysis using Arabidopsis whole-genome chip demonstrates that the gene expression profile of bestatin-treated plants is similar to that of JA-treated plants. Fourth, bestatin promotes a series of JA-related developmental phenotypes. Taken together, the unique action mode of bestatin in regulating JA-signaled processes leads us to the hypothesis that bestatin exerts its effects through the modulation of some key regulators in JA signaling. We have employed bestatin as an experimental tool to dissect JA signaling through a chemical genetic screening, which yielded a collection of Arabidopsis bestatin-resistant (ber) mutants that are insensitive to the inhibitory effects of bestatin on root elongation. Further characterization efforts demonstrate that some ber mutants are defective in various JA-induced responses, which allowed us to classify the ber mutants into three phenotypic groups: JA-insensitive ber mutants, JA-hypersensitive ber mutants, and mutants insensitive to bestatin but showing normal response to JA. Genetic and phenotypic analyses of the ber mutants with altered JA responses indicate that we have identified several novel loci involved in JA signaling.


The Plant Cell | 2014

The Ubiquitin Receptor DA1 Regulates Seed and Organ Size by Modulating the Stability of the Ubiquitin-Specific Protease UBP15/SOD2 in Arabidopsis

Liang Du; Na Li; Liangliang Chen; Yingxiu Xu; Yu Li; Yueying Zhang; Chuanyou Li; Yunhai Li

This work shows that the ubiquitin receptor DA1 genetically and physically interacts with the ubiquitin-specific protease UBP15 to regulate seed size in Arabidopsis, suggesting that DA1 and UBP15 are promising targets for crop improvement. Although the control of organ size is a fundamental question in developmental biology, little is known about the genetic and molecular mechanisms that determine the final size of seeds in plants. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligases DA2 and ENHANCER1 OF DA1 (EOD1)/BIG BROTHER to restrict seed growth in Arabidopsis thaliana. Here, we describe UBIQUITIN-SPECIFIC PROTEASE15 (UBP15), encoded by SUPPRESSOR2 OF DA1 (SOD2), which acts maternally to regulate seed size by promoting cell proliferation in the integuments of ovules and developing seeds. The sod2/ubp15 mutants form small seeds, while overexpression of UBP15 increases seed size of wild-type plants. Genetic analyses indicate that UBP15 functions antagonistically in a common pathway with DA1 to influence seed size, but does so independently of DA2 and EOD1. Further results reveal that DA1 physically associates with UBP15 in vitro and in vivo and modulates the stability of UBP15. Therefore, our findings establish a genetic and molecular framework for the regulation of seed size by four ubiquitin-related proteins DA1, DA2, EOD1, and UBP15 and suggest that they are promising targets for increasing seed size in crops.


Cell Research | 2010

The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis

Fang Liu; Hongling Jiang; Songqing Ye; Wen Ping Chen; Wenxing Liang; Yingxiu Xu; Bo Sun; Jiaqiang Sun; Qiaomei Wang; Jerry D. Cohen; Chuanyou Li

Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutant jasmonic acid-hypersensitive1-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea . Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of the jah1-1 mutant to B . cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. The jah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.


The Plant Cell | 2016

UBIQUITIN-SPECIFIC PROTEASE14 Interacts with ULTRAVIOLET-B INSENSITIVE4 to Regulate Endoreduplication and Cell and Organ Growth in Arabidopsis

Yingxiu Xu; Weihuan Jin; Na Li; Wenjuan Zhang; Cuimin Liu; Chuanyou Li; Yunhai Li

UBIQUITIN-SPECIFIC PROTEASE14 interacts with several cell cycle regulators to regulate endoreduplication and cell and organ growth, revealing a molecular link between endoreduplication and organ size. Organ growth is determined by a coordinated combination of cell proliferation and cell growth and differentiation. Endoreduplication is often coupled with cell growth and differentiation, but the genetic and molecular mechanisms that link endoreduplication with cell and organ growth are largely unknown. Here, we describe UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by the DA3 gene, which functions as a negative regulator of endoreduplication. The Arabidopsis thaliana da3-1 mutant shows large cotyledons, leaves, and flowers with higher ploidy levels. UBP14 acts along with UV-B-INSENSITIVE4 (UVI4), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, to repress endoreduplication. Also, UBP14 functions antagonistically with CELL CYCLE SWITCH52 A1 (CCS52A1), an activator of APC/C, to regulate endoreduplication. UBP14 physically associates with UVI4 both in vitro and in vivo but does not directly interact with CCS52A1. Further results reveal that UBP14 influences the stability of cyclin A2;3 (CYCA2;3) and cyclin-dependent kinase B1;1 (CDKB1;1), two downstream components of the APC/C. Thus, our findings show how endoreduplication is linked with cell and organ growth by revealing important genetic and molecular functions for the ubiquitin-specific protease UBP14 and for the key cell cycle regulators UVI4, CCS52A1, CYCA2;3, and CDKB1;1.


Plant and Cell Physiology | 2007

The CCCH-Type Zinc Finger Proteins AtSZF1 and AtSZF2 Regulate Salt Stress Responses in Arabidopsis

Jiaqiang Sun; Hongling Jiang; Yingxiu Xu; Hongmei Li; Xiaoyan Wu; Qi Xie; Chuanyou Li


Archive | 2011

Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol

Jiaqiang Sun; Qian Chen; Linlin Qi; Hongling Jiang; Shuyu Li; Yingxiu Xu; Fang Liu; Wenkun Zhou; Jianwei Pan; Xugang Li; Klaus Palme; Chuanyou Li


Environmental Sciences | 2012

Variation characteristics and potential ecological risk assessment of heavy metals in the surface sediments of Bohai Bay

Yingxiu Xu; Song Jm; Li Xg; Yuan Hm; Li N

Collaboration


Dive into the Yingxiu Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaqiang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongling Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongmei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuyu Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenkun Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Klaus Palme

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge