Yiping Wen
Sichuan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yiping Wen.
Infection and Immunity | 2016
Luhua Zhang; Ying Li; Yiping Wen; Gee W. Lau; Xiaobo Huang; Rui Wu; Qigui Yan; Yong Huang; Qin Zhao; Xiaoping Ma; Xintian Wen; Sanjie Cao
ABSTRACT Haemophilus parasuis is an opportunistic pathogen that causes Glässers disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis.
Frontiers in Microbiology | 2016
Ying Li; Sanjie Cao; Luhua Zhang; Gee W. Lau; Yiping Wen; Rui Wu; Qin Zhao; Xiaobo Huang; Qigui Yan; Yong Huang; Xintian Wen
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance (MDR) in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux pump inhibitor (EPI), suggesting a role for EPI in antibacterial strategies toward drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the MDR machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516.
PLOS ONE | 2015
Luhua Zhang; Ying Li; Ke Dai; Xintian Wen; Rui Jin Wu; Xiaobo Huang; Jin Jin; Kui Xu; Qigui Yan; Yong Huang; Xiaoping Ma; Yiping Wen; Sanjie Cao
Haemophilus parasuis, belonging to the family Pasteurellaceae, is the causative agent of Glässer’s disease leading to serious economic losses. In this study, a successive markerless mutation system for H. parasuis using two sequential steps of natural transformation was developed. By the first homologous recombination, the target genes were replaced by a cassette carrying kanamycin resistance gene and sacB (which confers sensitivity to sucrose) gene using kanamycin selection, followed by the second reconstruction to remove the selection cassette, with application of sucrose to further screen unmarked mutants. To improve DNA transformation frequency, several parameters have been analyzed further in this work. With this method, two unmarked deletions in one strain have been generated successfully. It is demonstrated that this system can be employed to construct multi-gene scarless deletions, which is of great help for developing live attenuated vaccines for H. parasuis.
Virus Research | 2016
Lei Yuan; Rui Wu; Hanyang Liu; Xintian Wen; Xiaobo Huang; Yiping Wen; Xiaoping Ma; Qigui Yan; Yong Huang; Qin Zhao; Sanjie Cao
Since September 2012, an epidemic has been spreading among swine in a pig farm located in Sichuan province, southwest China, which has resulted in abortion, stillbirth, and fetal mummification. The brains of stillborn pigs were collected and a previously unknown Japanese encephalitis virus (JEV), namely SCYA201201, was isolated. According to the results of agarose gel diffusion precipitation, indirect immunofluorescence analysis, neutralization testing, reverse transcription PCR (RT-PCR) amplification, and physical and chemical testing, the virus was conformed to have the characteristics of JEV. The virus titer in BHK-21 cells was 10(8.47)PFU/ml and the median lethal dose (LD50) to 3-week-old and 7-day-old mice was 1.99 log10 and 1.02 log10 PFU/LD50, respectively. The results of tissue tropism for mice showed that the viral load in the brain was significantly higher than other organs, indicating that the isolate was strongly neurotropic. Additionally, the complete genome sequence of the isolate was determined and compared with other JEV strains. Phylogenetic analysis showed that the isolate belongs to genotype I and may be an imported virus. The isolate had 88.4% nucleotide identity with the Chinese vaccine strain SA14-14-2. However, there were 69 amino acid substitutions compared with the strain SA14-14-2. Some substitutions indicated that SCYA201201 was highly neurovirulent and infective, in accordance with the results of animal testing.
Proteome Science | 2014
Luhua Zhang; Yiping Wen; Ying Li; Xingliang Wei; Xuefeng Yan; Xintian Wen; Rui Wu; Xiaobo Huang; Yong Huang; Qigui Yan; Mafeng Liu; Sanjie Cao
BackgroundHaemophilus parasuis is the causative agent of Glässer’s disease characterized by polyserositis, arthritis, and meningitis in pig, leading to serious economic loss. Despite many years of study, virulence factors and the mechanisms of the entire infection process remain largely unclear. So two-dimensional gel electrophoresis and mass spectrometry were used to search for distinctions at the membrane protein expression level between two H. parasuis isolates aimed at uncovering some proteins potentially involved in habitat adaption and pathogenesis.ResultsA comparative proteomic approach combining two-dimensional gel electrophoresis with mass spectrometry and tandem mass spectrometry was employed to explore the differences among membrane proteomes of a virulent Haemophilus parasuis strain isolated from the lung of a diseased pig and an avirulent strain isolated from the nasal swab of a healthy pig. Differentially expressed protein spots identified by mass spectrometry were annotated and analyzed by bioinformatic interpretation. The mRNA level was determined by quantitative real-time PCR. Proteins representing diverse functional activities were identified. Among them, the tonB-dependent siderophore receptor was a new discovery highlighted for its activity in iron uptake. In addition, periplasmic serine protease and putrescine/spermidine ABC transporter substrate-binding protein were given focus because of their virulence potential. This study revealed that the differentially expressed proteins were important in either the habitat adaption or pathogenesis of H. parasuis.ConclusionsThe outcome demonstrated the presence of some proteins which raise the speculation for their importance in helping in habitat adaption or pathogenesis within the host.
Biochemical and Biophysical Research Communications | 2014
Xingliang Wei; Sanjie Cao; Luhua Zhang; Xintian Wen; Yiping Wen; Rui Wu; Xiaobo Huang; Yong Huang; Qigui Yan
This study used a comparative proteomics approach to distinguish between the two-dimensional electrophoresis profiles of extracellular proteins in Nagasaki and SW114. Protein spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. The ten proteins unique to Nagasaki were putative adhesin AidA protein, putative extracellular serine protease (autotransporter) (771aa), putative extracellular serine protease (autotransporter) (780aa), protective surface antigen D15, 30S ribosomal protein S2, periplasmic serine protease do/hhoA-like protein, acid phosphatase, membrane protein, protein-disulfide isomerase, and iron ABC transporter substrate-binding protein. Meanwhile, the two proteins unique to SW114 were C4-dicarboxylate ABC transporter substrate-binding protein and peptide ABC transporter substrate-binding protein. Quantitative PCR was used to analyze the mRNA transcript levels of three randomly selected proteins. The afuA, AidA, and ompD15 genes encoding iron ABC transporter substrate-binding protein, putative adhesin AidA protein and protective surface antigen D15 respectively demonstrated significantly higher mRNA transcript levels (39.606, 3.924, and 36.668, respectively) in Nagasaki than in SW114. These observations suggest the levels of differentially expressed proteins were directly proportional to their cellular mRNA levels. Three virulence-related proteins, namely, putative adhesin AidA protein, putative extracellular serine protease (autotransporter) (771aa) and putative extracellular serine protease (autotransporter) (780aa) were identified in Nagasaki.
Veterinary Microbiology | 2016
Lingqiang Ding; Xintian Wen; Lvqin He; Xuefeng Yan; Yongping Wen; Sanjie Cao; Xiaobo Huang; Rui Wu; Yiping Wen
As a global transcriptional factor, ArcA regulates the expression of hundreds of genes involved in aerobic and anaerobic metabolism. Here we deleted arcA gene and investigated the biological characteristics of arcA deletion mutant (ΔarcA) in Haemophilus parasuis (H. parasuis) serovar 13 clinical strain EP3. Results indicated that deletion of arcA impaired growth of EP3 strain under anaerobic condition, and reduced virulence of EP3 strain in mice. Additionally, the ΔarcA strain showed greater sensitivity in porcine serum and produced less biofilm mass than the EP3 strain. Taken together, these findings suggested that the arcA gene may be involved in pathogenesis in Haemophilus parasuis.
Infection, Genetics and Evolution | 2016
Jing Xia; Xiao He; Ke-Chang Yao; Li-Jing Du; Ping Liu; Qigui Yan; Yiping Wen; Sanjie Cao; Xinfeng Han; Yong Huang
Abstract The aim of this study was to decipher the molecular epidemiological and antigenic characteristics of infectious bronchitis virus strains (IBVs) isolated in recent years in southwestern China. A total of 24 field strains were isolated from diseased chickens between 2012 and 2016. Phylogenetic analysis based on S1 nucleotide sequences showed that 16 of the 24 isolates were clustered into four distinct genotypes: QX (37.5%), TW (16.7%, TWI and TWII), Mass (8.3%), and J2 (4.2%). The QX genotype was still the prevalent genotype in southwestern China. Recombination analysis of the S1 subunit gene showed that eight of the 24 field strains were recombinant variants that originated from field strains and vaccine strains. A new potential recombination hotspot [ATTTT(T/A)] was identified, implying that recombination events may become more and more common. The antigenicity of ten IBVs, including seven field strains and commonly used vaccine strains, were assayed with a viral cross-neutralization assay in chicken embryonated kidney cells (CEK). The results showed that the ten IBVs could be divided into four serotypes (Massachusetts, 793B, Sczy3, and SCYB). Sczy3 and 793B were the predominant serotypes. Six of the seven field isolates (all except for cK/CH/SCYB/140913) cross-reacted well with anti-sera against other field strains. In conclusion, the genetic and antigenic features of IBVs from southwestern China in recent years have changed when compared to the previous reports. The results could provide a reference for vaccine development and the prevention of infectious bronchitis in southwestern China.
Frontiers in Microbiology | 2016
Fei Zhang; Sanjie Cao; Zhuang Zhu; Yusheng Yang; Xintian Wen; Yung-Fu Chang; Xiaobo Huang; Rui Wu; Yiping Wen; Qigui Yan; Yong Huang; Xiaoping Ma; Qin Zhao
Six in vivo-induced (IVI) antigens—RnhB, GalU, GalT, Apl_1061, Apl_1166, and HflX were selected for a vaccine trial in a mouse model. The results showed that the IgG levels in each immune group was significantly higher than that of the negative control (P < 0.001). Except rRnhB group, proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was observed in rGalU and rGalT groups (P < 0.05). In the rGalT vaccinated group, the proportion of CD4+ T cells in spleen was significant higher than that of negative control (P < 0.05). Moreover, proportions of CD4+ T cells in other vaccinated groups were all up-regulated to varying degrees. Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected. A survival rate of 87.5, 62.5, and 62.5% were obtained among rGalT, rAPL_1166, and rHflX group, respectively while the remaining three groups was only 25%. Histopathological analyses of lungs indicated that surviving animals from the vaccinated groups showed relatively normal pulmonary structure alveoli. These findings confirm that IVI antigens used as vaccine candidates provide partial protection against Actinobacillus pleuropneumoniae infection in a mouse model, which could be used as potential vaccine candidates in piglets.
Archives of Virology | 2014
Rui Wu; Yiping Wen; Xiaobo Huang; Xintian Wen; Qiguai Yan; Yong Huang; Xiaoping Ma; Sanjie Cao
To investigate porcine parvovirus 5 (PPV5) infections in swine herds in China, clinical specimens of piglet lungs were examined for the presence of PPV5 using a polymerase chain reaction method. A strain of PPV5 was detected, and its genome was sequenced and analyzed. In the sequence alignment and phylogenetic analysis, the Chinese PPV5 strain clustered into a distinct clade with the reference PPV5 strains. These results provide direct evidence that PPV5 is present in pigs in China. Extensive epidemiological studies are warranted to determine the geographic distribution of PPV5 in China.