Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiqi Lu is active.

Publication


Featured researches published by Yiqi Lu.


Nature Genetics | 2010

Genome-wide association studies of 14 agronomic traits in rice landraces.

Xuehui Huang; Xinghua Wei; Tao Sang; Qiang Zhao; Qi Feng; Yan Zhao; Canyang Li; Chuanrang Zhu; Tingting Lu; Zhiwu Zhang; Meng Li; Danlin Fan; Yunli Guo; Ahong Wang; Lu Wang; Liuwei Deng; Wenjun Li; Yiqi Lu; Qijun Weng; K. Liu; Tao Huang; Taoying Zhou; Yufeng Jing; Wei Li; Zhang Lin; Edward S. Buckler; Qian Qian; Qifa Zhang; Jiayang Li; Bin Han

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is important to world food security. Here we have identified ∼3.6 million SNPs by sequencing 517 rice landraces and constructed a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS explained ∼36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical biparental cross-mapping for dissecting complex traits in rice.


Nature | 2012

A map of rice genome variation reveals the origin of cultivated rice

Xuehui Huang; Nori Kurata; Xinghua Wei; Zi-Xuan Wang; Ahong Wang; Qiang Zhao; Yan Zhao; K. Liu; Hengyun Lu; Wenjun Li; Yunli Guo; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Chuanrang Zhu; Tao Huang; Lei Zhang; Yongchun Wang; Lei Feng; Hiroyasu Furuumi; Takahiko Kubo; Toshie Miyabayashi; Xiaoping Yuan; Qun Xu; Guojun Dong; Qilin Zhan; Canyang Li; Asao Fujiyama; Atsushi Toyoda

Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.


Nature | 2002

Sequence and analysis of rice chromosome 4

Qi Feng; Yujun Zhang; Pei Hao; Wang S; Gang Fu; Yucheng Huang; Ying Li; Jingjie Zhu; Yilei Liu; Xin Hu; Peixin Jia; Yu Zhang; Qiang Zhao; Kai Ying; Shuliang Yu; Yesheng Tang; Qijun Weng; Lei Zhang; Ying Lu; Jie Mu; Yiqi Lu; Lei S. Zhang; Zhen Yu; Danlin Fan; Xiaohui Liu; Tingting Lu; Can Li; Yongrui Wu; Tongguo Sun; Haiyan Lei

Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.


Nature Genetics | 2012

Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm

Xuehui Huang; Yan Zhao; Xinghua Wei; Canyang Li; Ahong Wang; Qiang Zhao; Wenjun Li; Yunli Guo; Liuwei Deng; Chuanrang Zhu; Danlin Fan; Yiqi Lu; Qijun Weng; K. Liu; Taoying Zhou; Yufeng Jing; Lizhen Si; Guojun Dong; Tao Huang; Tingting Lu; Qi Feng; Qian Qian; Jiayang Li; Bin Han

A high-density haplotype map recently enabled a genome-wide association study (GWAS) in a population of indica subspecies of Chinese rice landraces. Here we extend this methodology to a larger and more diverse sample of 950 worldwide rice varieties, including the Oryza sativa indica and Oryza sativa japonica subspecies, to perform an additional GWAS. We identified a total of 32 new loci associated with flowering time and with ten grain-related traits, indicating that the larger sample increased the power to detect trait-associated variants using GWAS. To characterize various alleles and complex genetic variation, we developed an analytical framework for haplotype-based de novo assembly of the low-coverage sequencing data in rice. We identified candidate genes for 18 associated loci through detailed annotation. This study shows that the integrated approach of sequence-based GWAS and functional genome annotation has the potential to match complex traits to their causal polymorphisms in rice.


Nature Genetics | 2013

The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)

Zhenhua Peng; Ying Lu; Lubin Li; Qiang Zhao; Qi Feng; Zhimin Gao; Hengyun Lu; Tao Hu; Na Yao; K. Liu; Yan Li; Danlin Fan; Yunli Guo; Wenjun Li; Yiqi Lu; Qijun Weng; Congcong Zhou; Lei Zhang; Tao Huang; Yan Zhao; Chuanrang Zhu; Xing'e Liu; Xuewen Yang; Tao Wang; Kun Miao; Caiyun Zhuang; Xiaolu Cao; Wenli Tang; Guanshui Liu; Yingli Liu

Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. However, no species in the Bambusoideae subfamily has been sequenced. Here, we report a high-quality draft genome sequence of moso bamboo (P. heterocycla var. pubescens). The 2.05-Gb assembly covers 95% of the genomic region. Gene prediction modeling identified 31,987 genes, most of which are supported by cDNA and deep RNA sequencing data. Analyses of clustered gene families and gene collinearity show that bamboo underwent whole-genome duplication 7–12 million years ago. Identification of gene families that are key in cell wall biosynthesis suggests that the whole-genome duplication event generated more gene duplicates involved in bamboo shoot development. RNA sequencing analysis of bamboo flowering tissues suggests a potential connection between drought-responsive and flowering genes.


Nature Genetics | 2013

A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica )

Guanqing Jia; Xuehui Huang; Hui Zhi; Yan Zhao; Qiang Zhao; Wenjun Li; Yang Chai; Lifang Yang; K. Liu; Hengyun Lu; Chuanrang Zhu; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Yunli Guo; Tao Huang; Lei Zhang; Tingting Lu; Qi Feng; Hangfei Hao; Hongkuan Liu; Ping Lu; Ning Zhang; Yuhui Li; Erhu Guo; Shujun Wang; Suying Wang; Jinrong Liu; Wenfei Zhang

Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.


Nature Genetics | 2016

OsSPL13 controls grain size in cultivated rice

Lizhen Si; Jiaying Chen; Xuehui Huang; Hao Gong; Jianghong Luo; Qingqing Hou; Taoying Zhou; Tingting Lu; Jingjie Zhu; Yingying Shangguan; Erwang Chen; Chengxiang Gong; Qiang Zhao; Yufeng Jing; Yan Zhao; Yan Li; Lingling Cui; Danlin Fan; Yiqi Lu; Qijun Weng; Yongchun Wang; Qilin Zhan; K. Liu; Xinghua Wei; Kyungsook An; Gynheung An; Bin Han

Although genetic diversity has a cardinal role in domestication, abundant natural allelic variations across the rice genome that cause agronomically important differences between diverse varieties have not been fully explored. Here we implement an approach integrating genome-wide association testing with functional analysis on grain size in a diverse rice population. We report that a major quantitative trait locus, GLW7, encoding the plant-specific transcription factor OsSPL13, positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield. We determine that a tandem-repeat sequence in the 5′ UTR of OsSPL13 alters its expression by affecting transcription and translation and that high expression of OsSPL13 is associated with large grains in tropical japonica rice. Further analysis indicates that the large-grain allele of GLW7 in tropical japonica rice was introgressed from indica varieties under artificial selection. Our study demonstrates that new genes can be effectively identified on the basis of genome-wide association data.


Nature Genetics | 2015

The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation

Yaping Wang; Ying Lu; Yong Zhang; Zemin Ning; Yan Li; Qiang Zhao; Hengyun Lu; Rong Huang; Xiao-Qin Xia; Qi Feng; Xu-Fang Liang; K. Liu; Lei Zhang; Tingting Lu; Tao Huang; Danlin Fan; Qijun Weng; Chuanrang Zhu; Yiqi Lu; Wenjun Li; Ziruo Wen; Congcong Zhou; Qilin Tian; Xiaojun Kang; Mijuan Shi; Wanting Zhang; Songhun Jang; Fukuan Du; Shan He; Lanjie Liao

The grass carp is an important farmed fish, accounting for ∼16% of global freshwater aquaculture, and has a vegetarian diet. Here we report a 0.9-Gb draft genome of a gynogenetic female adult and a 1.07-Gb genome of a wild male adult. Genome annotation identified 27,263 protein-coding gene models in the female genome. A total of 114 scaffolds consisting of 573 Mb are anchored on 24 linkage groups. Divergence between grass carp and zebrafish is estimated to have occurred 49–54 million years ago. We identify a chromosome fusion in grass carp relative to zebrafish and report frequent crossovers between the grass carp X and Y chromosomes. We find that transcriptional activation of the mevalonate pathway and steroid biosynthesis in liver is associated with the grass carps adaptation from a carnivorous to an herbivorous diet. We believe that the grass carp genome could serve as an initial platform for breeding better-quality fish using a genomic approach.


Nature Communications | 2015

Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.

Xuehui Huang; Shihua Yang; Junyi Gong; Yan Zhao; Qi Feng; Hao Gong; Wenjun Li; Qilin Zhan; Benyi Cheng; Junhui Xia; Neng Chen; Zhongna Hao; K. Liu; Chuanrang Zhu; Tao Huang; Qiang Zhao; Lei Zhang; Danlin Fan; Congcong Zhou; Yiqi Lu; Qijun Weng; Zi-Xuan Wang; Jiayang Li; Bin Han

Exploitation of heterosis is one of the most important applications of genetics in agriculture. However, the genetic mechanisms of heterosis are only partly understood, and a global view of heterosis from a representative number of hybrid combinations is lacking. Here we develop an integrated genomic approach to construct a genome map for 1,495 elite hybrid rice varieties and their inbred parental lines. We investigate 38 agronomic traits and identify 130 associated loci. In-depth analyses of the effects of heterozygous genotypes reveal that there are only a few loci with strong overdominance effects in hybrids, but a strong correlation is observed between the yield and the number of superior alleles. While most parental inbred lines have only a small number of superior alleles, high-yielding hybrid varieties have several. We conclude that the accumulation of numerous rare superior alleles with positive dominance is an important contributor to the heterotic phenomena.


Nature | 2016

Genomic architecture of heterosis for yield traits in rice

Xuehui Huang; Shihua Yang; Junyi Gong; Qiang Zhao; Qi Feng; Qilin Zhan; Yan Zhao; Wenjun Li; Benyi Cheng; Junhui Xia; Neng Chen; Tao Huang; Lei Zhang; Danlin Fan; Jiaying Chen; Congcong Zhou; Yiqi Lu; Qijun Weng; Bin Han

Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.

Collaboration


Dive into the Yiqi Lu's collaboration.

Top Co-Authors

Avatar

Qiang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Danlin Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qijun Weng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanrang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge