Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanrang Zhu is active.

Publication


Featured researches published by Chuanrang Zhu.


Nature Genetics | 2010

Genome-wide association studies of 14 agronomic traits in rice landraces.

Xuehui Huang; Xinghua Wei; Tao Sang; Qiang Zhao; Qi Feng; Yan Zhao; Canyang Li; Chuanrang Zhu; Tingting Lu; Zhiwu Zhang; Meng Li; Danlin Fan; Yunli Guo; Ahong Wang; Lu Wang; Liuwei Deng; Wenjun Li; Yiqi Lu; Qijun Weng; K. Liu; Tao Huang; Taoying Zhou; Yufeng Jing; Wei Li; Zhang Lin; Edward S. Buckler; Qian Qian; Qifa Zhang; Jiayang Li; Bin Han

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is important to world food security. Here we have identified ∼3.6 million SNPs by sequencing 517 rice landraces and constructed a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS explained ∼36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical biparental cross-mapping for dissecting complex traits in rice.


Nature | 2012

A map of rice genome variation reveals the origin of cultivated rice

Xuehui Huang; Nori Kurata; Xinghua Wei; Zi-Xuan Wang; Ahong Wang; Qiang Zhao; Yan Zhao; K. Liu; Hengyun Lu; Wenjun Li; Yunli Guo; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Chuanrang Zhu; Tao Huang; Lei Zhang; Yongchun Wang; Lei Feng; Hiroyasu Furuumi; Takahiko Kubo; Toshie Miyabayashi; Xiaoping Yuan; Qun Xu; Guojun Dong; Qilin Zhan; Canyang Li; Asao Fujiyama; Atsushi Toyoda

Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.


Nature Genetics | 2012

Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm

Xuehui Huang; Yan Zhao; Xinghua Wei; Canyang Li; Ahong Wang; Qiang Zhao; Wenjun Li; Yunli Guo; Liuwei Deng; Chuanrang Zhu; Danlin Fan; Yiqi Lu; Qijun Weng; K. Liu; Taoying Zhou; Yufeng Jing; Lizhen Si; Guojun Dong; Tao Huang; Tingting Lu; Qi Feng; Qian Qian; Jiayang Li; Bin Han

A high-density haplotype map recently enabled a genome-wide association study (GWAS) in a population of indica subspecies of Chinese rice landraces. Here we extend this methodology to a larger and more diverse sample of 950 worldwide rice varieties, including the Oryza sativa indica and Oryza sativa japonica subspecies, to perform an additional GWAS. We identified a total of 32 new loci associated with flowering time and with ten grain-related traits, indicating that the larger sample increased the power to detect trait-associated variants using GWAS. To characterize various alleles and complex genetic variation, we developed an analytical framework for haplotype-based de novo assembly of the low-coverage sequencing data in rice. We identified candidate genes for 18 associated loci through detailed annotation. This study shows that the integrated approach of sequence-based GWAS and functional genome annotation has the potential to match complex traits to their causal polymorphisms in rice.


Nature Genetics | 2013

The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)

Zhenhua Peng; Ying Lu; Lubin Li; Qiang Zhao; Qi Feng; Zhimin Gao; Hengyun Lu; Tao Hu; Na Yao; K. Liu; Yan Li; Danlin Fan; Yunli Guo; Wenjun Li; Yiqi Lu; Qijun Weng; Congcong Zhou; Lei Zhang; Tao Huang; Yan Zhao; Chuanrang Zhu; Xing'e Liu; Xuewen Yang; Tao Wang; Kun Miao; Caiyun Zhuang; Xiaolu Cao; Wenli Tang; Guanshui Liu; Yingli Liu

Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. However, no species in the Bambusoideae subfamily has been sequenced. Here, we report a high-quality draft genome sequence of moso bamboo (P. heterocycla var. pubescens). The 2.05-Gb assembly covers 95% of the genomic region. Gene prediction modeling identified 31,987 genes, most of which are supported by cDNA and deep RNA sequencing data. Analyses of clustered gene families and gene collinearity show that bamboo underwent whole-genome duplication 7–12 million years ago. Identification of gene families that are key in cell wall biosynthesis suggests that the whole-genome duplication event generated more gene duplicates involved in bamboo shoot development. RNA sequencing analysis of bamboo flowering tissues suggests a potential connection between drought-responsive and flowering genes.


Nature Genetics | 2013

A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica )

Guanqing Jia; Xuehui Huang; Hui Zhi; Yan Zhao; Qiang Zhao; Wenjun Li; Yang Chai; Lifang Yang; K. Liu; Hengyun Lu; Chuanrang Zhu; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Yunli Guo; Tao Huang; Lei Zhang; Tingting Lu; Qi Feng; Hangfei Hao; Hongkuan Liu; Ping Lu; Ning Zhang; Yuhui Li; Erhu Guo; Shujun Wang; Suying Wang; Jinrong Liu; Wenfei Zhang

Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.


Nature Genetics | 2015

The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation

Yaping Wang; Ying Lu; Yong Zhang; Zemin Ning; Yan Li; Qiang Zhao; Hengyun Lu; Rong Huang; Xiao-Qin Xia; Qi Feng; Xu-Fang Liang; K. Liu; Lei Zhang; Tingting Lu; Tao Huang; Danlin Fan; Qijun Weng; Chuanrang Zhu; Yiqi Lu; Wenjun Li; Ziruo Wen; Congcong Zhou; Qilin Tian; Xiaojun Kang; Mijuan Shi; Wanting Zhang; Songhun Jang; Fukuan Du; Shan He; Lanjie Liao

The grass carp is an important farmed fish, accounting for ∼16% of global freshwater aquaculture, and has a vegetarian diet. Here we report a 0.9-Gb draft genome of a gynogenetic female adult and a 1.07-Gb genome of a wild male adult. Genome annotation identified 27,263 protein-coding gene models in the female genome. A total of 114 scaffolds consisting of 573 Mb are anchored on 24 linkage groups. Divergence between grass carp and zebrafish is estimated to have occurred 49–54 million years ago. We identify a chromosome fusion in grass carp relative to zebrafish and report frequent crossovers between the grass carp X and Y chromosomes. We find that transcriptional activation of the mevalonate pathway and steroid biosynthesis in liver is associated with the grass carps adaptation from a carnivorous to an herbivorous diet. We believe that the grass carp genome could serve as an initial platform for breeding better-quality fish using a genomic approach.


RNA | 2015

Transcriptome-wide investigation of circular RNAs in rice

Tingting Lu; Lingling Cui; Yan Zhou; Chuanrang Zhu; Danlin Fan; Hao Gong; Qiang Zhao; Congcong Zhou; Yan Zhao; Danfeng Lu; Jianghong Luo; Yongchun Wang; Qilin Tian; Qi Feng; Tao Huang; Bin Han

Various stable circular RNAs (circRNAs) are newly identified to be the abundance of noncoding RNAs in Archaea, Caenorhabditis elegans, mice, and humans through high-throughput deep sequencing coupled with analysis of massive transcriptional data. CircRNAs play important roles in miRNA function and transcriptional controlling by acting as competing endogenous RNAs or positive regulators on their parent coding genes. However, little is known regarding circRNAs in plants. Here, we report 2354 rice circRNAs that were identified through deep sequencing and computational analysis of ssRNA-seq data. Among them, 1356 are exonic circRNAs. Some circRNAs exhibit tissue-specific expression. Rice circRNAs have a considerable number of isoforms, including alternative backsplicing and alternative splicing circularization patterns. Parental genes with multiple exons are preferentially circularized. Only 484 circRNAs have backsplices derived from known splice sites. In addition, only 92 circRNAs were found to be enriched for miniature inverted-repeat transposable elements (MITEs) in flanking sequences or to be complementary to at least 18-bp flanking intronic sequences, indicating that there are some other production mechanisms in addition to direct backsplicing in rice. Rice circRNAs have no significant enrichment for miRNA target sites. A transgenic study showed that overexpression of a circRNA construct could reduce the expression level of its parental gene in transgenic plants compared with empty-vector control plants. This suggested that circRNA and its linear form might act as a negative regulator of its parental gene. Overall, these analyses reveal the prevalence of circRNAs in rice and provide new biological insights into rice circRNAs.


Nature Communications | 2015

Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.

Xuehui Huang; Shihua Yang; Junyi Gong; Yan Zhao; Qi Feng; Hao Gong; Wenjun Li; Qilin Zhan; Benyi Cheng; Junhui Xia; Neng Chen; Zhongna Hao; K. Liu; Chuanrang Zhu; Tao Huang; Qiang Zhao; Lei Zhang; Danlin Fan; Congcong Zhou; Yiqi Lu; Qijun Weng; Zi-Xuan Wang; Jiayang Li; Bin Han

Exploitation of heterosis is one of the most important applications of genetics in agriculture. However, the genetic mechanisms of heterosis are only partly understood, and a global view of heterosis from a representative number of hybrid combinations is lacking. Here we develop an integrated genomic approach to construct a genome map for 1,495 elite hybrid rice varieties and their inbred parental lines. We investigate 38 agronomic traits and identify 130 associated loci. In-depth analyses of the effects of heterozygous genotypes reveal that there are only a few loci with strong overdominance effects in hybrids, but a strong correlation is observed between the yield and the number of superior alleles. While most parental inbred lines have only a small number of superior alleles, high-yielding hybrid varieties have several. We conclude that the accumulation of numerous rare superior alleles with positive dominance is an important contributor to the heterotic phenomena.


BMC Plant Biology | 2010

Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences

Zhenhua Peng; Tingting Lu; Lubin Li; Xiaohui Liu; Zhimin Gao; Tao Hu; Xuewen Yang; Qi Feng; Jianping Guan; Qijun Weng; Danlin Fan; Chuanrang Zhu; Ying Lu; Bin Han; Zehui Jiang

BackgroundWith the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic resources have accumulated rapidly for almost all major lineages of grasses, bamboo remains the only large subfamily of Poaceae with little genomic information available in databases, which seriously hampers our ability to take a full advantage of the wealth of grass genomic data for effective comparative studies.ResultsHere we report the cloning and sequencing of 10,608 putative full length cDNAs (FL-cDNAs) primarily from Moso bamboo, Phyllostachys heterocycla cv. pubescens, a large woody bamboo with the highest ecological and economic values of all bamboos. This represents the third largest FL-cDNA collection to date of all plant species, and provides the first insight into the gene and genome structures of bamboos. We developed a Moso bamboo genomic resource database that so far contained the sequences of 10,608 putative FL-cDNAs and nearly 38,000 expressed sequence tags (ESTs) generated in this study.ConclusionAnalysis of FL-cDNA sequences show that bamboo diverged from its close relatives such as rice, wheat, and barley through an adaptive radiation. A comparative analysis of the lignin biosynthesis pathway between bamboo and rice suggested that genes encoding caffeoyl-CoA O-methyltransferase may serve as targets for genetic manipulation of lignin content to reduce pollutants generated from bamboo pulping.


BMC Genomics | 2012

Strand-specific RNA-seq reveals widespread occurrence of novel cis- natural antisense transcripts in rice

Tingting Lu; Chuanrang Zhu; Guojun Lu; Yunli Guo; Yan Zhou; Zhiyong Zhang; Yan Zhao; Wenjun Li; Ying Lu; Wei-Hua Tang; Qi Feng; Bin Han

BackgroundCis- natural antisense transcripts (cis- NATs) are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis- NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis- NATs that may generate endogenous short interfering RNAs (nat-siRNAs), which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis- NATs.ResultsWe applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq) to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa). Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set), 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis- NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis- NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis- NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis- NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis- NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis- NAT groups may be involved in complex regulatory networks.ConclusionsOur study profiles an abundance of cis- NATs and nat-siRNAs in rice. These data are valuable for gaining insight into the complex function of the rice transcriptome.

Collaboration


Dive into the Chuanrang Zhu's collaboration.

Top Co-Authors

Avatar

Danlin Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qijun Weng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuehui Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiqi Lu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge