Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiwen Yang is active.

Publication


Featured researches published by Yiwen Yang.


Journal of Physical Chemistry B | 2012

Differential Solubility of Ethylene and Acetylene in Room-Temperature Ionic Liquids: A Theoretical Study

Xu Zhao; Huabin Xing; Qiwei Yang; Rulong Li; Baogen Su; Zongbi Bao; Yiwen Yang; Qilong Ren

The room-temperature ionic liquids (RTILs) have potential in realizing the ethylene (C(2)H(4)) and acetylene (C(2)H(2)) separation and avoiding solvent loss and environmental pollution compared with traditional solvents. The interaction mechanisms between gases and RTILs are important for the exploration of new RTILs for gas separation; thus, they were studied by quantum chemical calculation and molecular dynamics simulation in this work. The optimized geometries were obtained for the complexes of C(2)H(4)/C(2)H(2) with anions (Tf(2)N(-), BF(4)(-), and OAc(-)), cation (bmim(+)), and their ion pairs, and the analysis for geometry, interaction energy, natural bond orbital (NBO), and atoms in molecules (AIM) was performed. The quantum chemical calculation results show that the hydrogen-bonding interaction between the gas molecule and anion is the dominant factor in determining the solubility of C(2)H(2) in RTILs. However, the hydrogen-bonding interaction, the p-π interaction in C(2)H(4)-anion, and the π-π interaction in C(2)H(4)-cation are weak and comparable, which all affect the solubility of C(2)H(4) in RTILs with comparable contribution. The calculated results for the distance of H(gas)···X (X = O or F in anions), the BSSE-corrected interaction energy, the electron density of H(gas)···X at the bond critical point (ρ(BCP)), and the relative second-order perturbation stabilization energy (E(2)) are consistent with the experimental data that C(2)H(2) is more soluble than C(2)H(4) in the same RTILs and the solubility of C(2)H(4) in RTILs has the following order: [bmim][Tf(2)N] > [bmim][OAc] > [bmim][BF(4)]. The calculated results also agree with the order of C(2)H(2) solubility in different RTILs that [bmim][OAc] > [bmim][BF(4)] > [bmim][Tf(2)N]. Furthermore, the calculation results indicate that there is strong C(2)H(2)-RTIL interaction, which cannot be negligible compared to the RTIL-RTIL interaction; thus, the regular solution theory is probably not suitable to correlate C(2)H(2) solubility in RTILs. The molecular dynamics simulation results show that the hydrogen bond between the H in C2 of the imidazolium cation and the anion will weaken the hydrogen-bonding interaction of the gas molecule and anion in a realistic solution condition, especially in the C(2)H(4)-RTIL system.


RSC Advances | 2014

Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures

Ganggang Chang; Zongbi Bao; Qilong Ren; Shuguang Deng; Zhiguo Zhang; Baogen Su; Huabin Xing; Yiwen Yang

Various amounts of Cu+ nanoparticles were successfully deposited to the pores of metal–organic frameworks MIL-101 with a double-solvent method. An optimized, cuprous-loaded MIL-101 was shown to have an enhanced ethylene adsorption capacity and higher ethylene–ethane selectivity (14.0), compared to pure MIL-101 (1.6). The great improvement in selectivity can be attributed to the newly generated nano-sized cuprous chloride particles that can selectively interact with the carbon–carbon double bond in ethylene through π-complexation.


Chinese Journal of Chemical Engineering | 2013

Recent Advances in Separation of Bioactive Natural Products

Qilong Ren; Huabin Xing; Zongbi Bao; Baogen Su; Qiwei Yang; Yiwen Yang; Zhiguo Zhang

Abstract Bioactive natural products are a main source of new drugs, functional foods and food additives. The separation of bioactive natural products plays an important role in transformation and use of biomass. The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products, so a series of extraction and separation techniques have been developed. This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coefficients, recent extraction techniques and isolation techniques. This overview of recent technological advances, discussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.


Journal of Agricultural and Food Chemistry | 2012

Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction

Yifeng Cao; Huabin Xing; Qiwei Yang; Zongbi Bao; Baogen Su; Yiwen Yang; Qilong Ren

The separation of a compound of interest from its structurally similar homologues is an important and challenging problem in producing high-purity natural products, such as the separation of genistein from other soybean isoflavone aglycone (SIA) homologues. The present work provided a novel method for separating genistein from its structurally similar homologues by ionic liquid (IL)-based liquid-liquid extraction using hydrophobic IL-water or hydrophilic IL/water-ethyl acetate biphasic systems. Factors that influence the distribution equilibrium of SIAs, including the structure and concentration of IL, pH value of the aqueous phase, and temperature, were investigated. Adequate distribution coefficients and selectivities over 7.0 were achieved with hydrophilic IL/water-ethyl acetate biphasic system. Through a laboratory-scale simulation of fractional extraction process containing four extraction stages and four scrubbing stages, genistein was separated from the SIA homologues with a purity of 95.3% and a recovery >90%.


Journal of Physical Chemistry B | 2014

One of the distinctive properties of ionic liquids over molecular solvents and inorganic salts: enhanced basicity stemming from the electrostatic environment and "free" microstructure.

Qiwei Yang; Huabin Xing; Zongbi Bao; Baogen Su; Zhiguo Zhang; Yiwen Yang; Sheng Dai; Qilong Ren

The basicity of ionic liquids (ILs) underlies many important IL-based processes including the dissolution and conversion of cellulose, the capture of CO2, and metal catalysis. In this work, we have disclosed the nature of the basicity of ILs, i.e., the difference between the basicity of IL and the basicity of the molecular solvent and inorganic salt, through a quantitative electrostatic and electronic analysis of the molecular surface for the first time. The results reveal one of the distinctive properties of ILs (enhanced basicity over molecular solvents and inorganic salts with the same basic site) stemming from their special electrostatic environment and microstructure. The enhancement is significant, from either the electrostatic aspect or the covalent aspect of basicity. The peculiar electrostatic environment of ILs leads to stronger basicity than similar molecular solvents, and the relatively freer microstructure of ILs contributes to the enhancement of basicity over their inorganic analogues. These results are highly instructive for better understanding the unique value of ILs and designing novel ILs to improve the efficiency of basicity-related processes.


Green Chemistry | 2012

High performance separation of sparingly aqua-/lipo-soluble bioactive compounds with an ionic liquid-based biphasic system

Yifeng Cao; Huabin Xing; Qiwei Yang; Baogen Su; Zongbi Bao; Ruihan Zhang; Yiwen Yang; Qilong Ren

Separation of high value bioactive compounds is a viable route to make full use of the biomass resources and improve the profitability. However, the sparing aqua- and lipo-solubility of the bioactive compounds makes their separation really challenging. Considering that ionic liquids show good solubility of biomass and could easily form biphasic systems with organic solvents, an ionic liquid (IL)-based biphasic system consisting of ionic liquid, water and ethyl acetate is proposed in this study. Ginkgolide homologues were selected as model compounds to evaluate its practicality. Adequate distribution coefficients, relatively high extraction capacity and selectivity were obtained with the novel biphasic system. The improved distribution coefficients of the ginkgolides are mainly attributed to the multiple interactions between ginkgolide and IL, which were confirmed by means of quantum chemistry calculations. Moreover, the effect of the interactions between ginkgolides and the extraction solvent on the selectivity coefficient was studied by measuring the Kamlet–Taft parameters of the extraction solvent. Based on the results of fractional extraction, which was simulated by calculation and validated by experiments, as well as the comparison of organic solvent consumption, the employed IL-based extraction would be a valid and clean method as an alternative to chromatographic methods for separating bioactive compounds in large-scale operations. It is noteworthy that the amount of organic solvents consumed with this method was supposed to be less than 1/11 of the most widely used chromatographic method.


Chemsuschem | 2016

New Insights into CO2 Absorption Mechanisms with Amino‐Acid Ionic Liquids

Qiwei Yang; Zhiping Wang; Zongbi Bao; Zhiguo Zhang; Yiwen Yang; Qilong Ren; Huabin Xing; Sheng Dai

The last decade saw an explosion of interest in using amine-functionalized materials for CO2 capture and conversion, and it is of great importance to elucidate the relationship between the molecular structure of amine-functionalized materials and their CO2 capacity. In this work, based on a new quantitative analysis method for the CO2 absorption mechanism of amino-acid ionic liquids (ILs) and quantum chemical calculations, we show that the small difference in the local structure of amine groups in ILs could lead to much different CO2 absorption mechanisms, which provides an opportunity for achieving higher CO2 capacity by structure design. This work revealed that the actual CO2 absorption mechanism by amino-acid ILs goes beyond the apparent CO2 /amine stoichiometry; a rigid ring structure around the amine group in ILs creates a unique electrostatic environment that inhibits the deprotonation of carbamic acid and enables actually equimolar CO2 /amine absorption.


Chemistry: A European Journal | 2015

Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction

Xianxian Liu; Qiwei Yang; Zongbi Bao; Baogen Su; Zhiguo Zhang; Qilong Ren; Yiwen Yang; Huabin Xing

A class of new ionic liquid (IL)-based nonaqueous lyotropic liquid crystals (LLCs) and the development of an efficient IL extraction process based on LC chemistry are reported. The nonaqueous LLCs feature extraordinarily high extraction capacity, excellent separation selectivity, easy recovery, and biocompatibility. This work also demonstrates that the introduction of self-assembled anisotropic nanostructures into an IL system is an efficient way to overcome the intrinsically strong polarity of ILs and enhances the molecular recognition ability of ILs. The distribution coefficients of IL-based LLCs for organic compounds with H-bond donors reached unprecedented values of 50-60 at very high feed concentrations (>100 mg mL(-1) ), which are 800-1000 times greater than those of common ILs as well as traditional organic and polymer extractants. The IL-based nonaqueous LLCs combining the unique properties of ILs and LCs open a new avenue for the development of high-performance extraction methods.


Chemical Communications | 2015

A metal–organic framework with immobilized Ag(I) for highly efficient desulfurization of liquid fuels

Minhui Huang; Ganggang Chang; Ye Su; Huabin Xing; Zhiguo Zhang; Yiwen Yang; Qilong Ren; Zongbi Bao; Banglin Chen

A metal-organic framework immobilized with Ag(i) sites, namely, (Cr)-MIL-101-SO3Ag, was successfully developed as a highly efficient desulfurization adsorbent because of the strong binding of these Ag(i) sites for thiophene derivatives.


Journal of Chromatography A | 2013

Synthesis and characterization of cellulose 3,5-dimethylphenylcarbamate silica hybrid spheres for enantioseparation of chiral β-blockers.

Xilun Weng; Zongbi Bao; Huabin Xing; Zhiguo Zhang; Qiwei Yang; Baogen Su; Yiwen Yang; Qilong Ren

A cellulose derivative-based chiral stationary phase (CSP) is considered one of the most widely applied CSPs due to its powerful enantioseparation ability. The high loading capacity and mechanical strength of CSPs are crucial for their application in preparative chromatography, such as a simulated moving bed. Compared to traditional cellulose-based CSPs that have been adsorbed onto chromatographic supports, organic-inorganic hybrid CSPs exhibit a potentially higher loading capacity and mechanical strength by increasing the density of chiral recognition groups. A hybrid cellulose 3,5-dimethylphenylcarbamate chiral stationary phase (organic/inorganic: 70/30, w/w) was prepared via a sol-gel method and characterized with several analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and (29)Si cross polarization/magic angle spinning nuclear magnetic resonance ((29)Si CP/MAS NMR). In addition, the as-synthesized hybrid chiral silica spheres were treated with an end-capping process to mask the residual silica hydroxyl groups. Compared to a commercial Chiralpak IB column, better separation of β-blocker drugs, including pindolol (selectivity of 5.55), metoprolol (2.30), propranolol (1.96), bisoprolol (1.74) and atenolol (1.46), on the end-capped CSP was achieved using liquid chromatography, which suggests that the packing material synthesized in this work has sufficient chiral discriminating ability for the effective separation of β-blocker drugs.

Collaboration


Dive into the Yiwen Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Su

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge