Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zongbi Bao is active.

Publication


Featured researches published by Zongbi Bao.


Environmental Science & Technology | 2010

Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A

Dipendu Saha; Zongbi Bao; Feng Jia; Shuguang Deng

Adsorption equilibrium and kinetics of CO(2), CH(4), N(2)O, and N(2) on two newly discovered adsorbents, metal-organic frameworks MOF-5 and MOF-177 and one traditional adsorbent, zeolite 5A were determined to assess their efficacy for CO(2), CH(4), and N(2)O removal from air and separation of CO(2) from CH(4) in pressure swing adsorption processes. Adsorption equilibrium and kinetics data for CO(2), CH(4), N(2)O, and N(2) on all three adsorbents were measured volumetrically at 298K and gas pressures up to 800 Torr. Adsorption equilibrium capacities of CO(2) and CH(4) on all three adsorbents were determined gravimetrically at 298 K and elevated pressures (14 bar for CO(2) and 100 bar for CH(4)). The Henrys law and Langmuir adsorption equilibrium models were applied to correlate the adsorption isotherms, and a classical micropore diffusion model was used to analyze the adsorption kinetic data. The adsorption equilibrium selectivity was calculated from the ratio of Henrys constants, and the adsorbent selection parameter for pressure swing adsorption processes were determined by combining the equilibrium selectivity and working capacity ratio. Based on the selectivity and adsorbent selection parameter results, zeolite 5A is a better adsorbent for removing CO(2) and N(2)O from air and separation of CO(2) from CH(4), whereas MOF-177 is the adsorbent of choice for removing CH(4) from air. However, both MOF adsorbents have larger adsorption capacities for CO(2) and CH(4) than zeolite 5A at elevated pressures, suggesting MOF-5 and MOF-177 are better adsorbents for CO(2) and CH(4) storage. The CH(4) adsorption capacity of 22 wt.% on MOF-177 at 298K and 100 bar is probably the largest adsorption uptake of CH(4) on any dry adsorbents. The average diffusivity of CO(2), CH(4) and N(2)O in MOF-5 and MOF-177 is in the order of 10(-9) m(2)/s, as compared to 10(-11) m(2)/s for CO(2), CH(4) and N(2)O in zeolite 5A. The effects of gas pressure on diffusivity for different adsorabte-adsorbent systems were also investigated.


Science | 2016

Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

Xili Cui; Kai-Jie Chen; Huabin Xing; Qiwei Yang; Rajamani Krishna; Zongbi Bao; Hui Wu; Wei Zhou; Xinglong Dong; Yu Han; Bin Li; Qilong Ren; Michael J. Zaworotko; Banglin Chen

Separating one organic from another Separating closely related organic molecules is a challenge (see the Perspective by Lin).The separation of acetylene from ethylene is needed in high-purity polymer production. Cui et al. developed a copper-based metal-organic framework with hexafluorosilicate and organic linkers designed to have a high affinity for acetylene. These materials, which capture four acetylene molecules in each pore, successfully separated acetylene from mixtures with ethylene. Propane and propylene are both important feedstock chemicals. Their physical and chemical similarity, however, requires energy-intense processes to separate them. Cadiau et al. designed a fluorinated porous metal-organic framework material that selectively adsorbed propylene, with the complete exclusion of propane. Science, this issue pp. 141 and 137; see also p. 121 A copper-based metal-organic framework with hexafluorosilicate linkers can separate acetylene from ethylene. The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture).


Journal of Colloid and Interface Science | 2011

Adsorption of CO2 and CH4 on a magnesium-based metal organic framework

Zongbi Bao; Liang Yu; Qilong Ren; Xiuyang Lu; Shuguang Deng

A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO(2) and CH(4). The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO(2) and CH(4) on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318 K and pressures up to 1 bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2 Å, a BET specific surface area of 1174 m(2)/g, CO(2) and CH(4) adsorption capacities of 8.61 mmol g(-1) (37.8 wt.%) and 1.05 mmol g(-1) (1.7 wt.%), respectively, at 298 K and 1 bar. Both CO(2) and CH(4) adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO(2) over CH(4) (q(CO2)/q(CH4)) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298 K. The initial heats of adsorption of CO(2) and CH(4) on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5 kJ mol(-1), respectively. The adsorption kinetic measurements suggest that the diffusivities of CO(2) and CH(4) on Mg-MOF-74 were comparable to those on zeolite 13X. CH(4) showed relatively faster adsorption kinetics than CO(2) in both adsorbents. The diffusion time constants of CO(2) and CH(4) in the Mg-MOF-74 adsorbent at 298 K were estimated to be 8.11 × 10(-3) and 4.05 × 10(-2) s(-1), respectively, showing a modest kinetic selectivity of about 5 for the separation CH(4) from CO(2).


Langmuir | 2011

Adsorption of Ethane, Ethylene, Propane, and Propylene on a Magnesium-Based Metal–Organic Framework

Zongbi Bao; Sufian Alnemrat; Liang Yu; Igor Vasiliev; Qilong Ren; Xiuyang Lu; Shuguang Deng

Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.


Energy and Environmental Science | 2016

Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures

Zongbi Bao; Ganggang Chang; Huabin Xing; Rajamani Krishna; Qilong Ren; Banglin Chen

In the process industries, the separation of mixtures of hydrocarbons is important both for the preparation of feedstocks and for use as end products. The constituents, hydrocarbons, are either aliphatic or aromatic, saturated or unsaturated, with a large variation in the number of carbon atoms. Using microporous metal–organic frameworks (MOFs), a number of different separation strategies can be employed to achieve the desired separation performance. The strategies include selective binding with the metal atoms of the framework, exploiting differences in molecular packing efficiencies within the ordered pore structures, utilizing selectivities based on the framework flexibility and gate-opening mechanisms, and molecular sieving. Various strategies are discussed in this article, along with perspectives for future research and development for improving the separation performance.


Journal of Physical Chemistry B | 2014

Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy.

Dan Xu; Qiwei Yang; Baogen Su; Zongbi Bao; Qilong Ren; Huabin Xing

Ionic liquids (ILs) with relatively strong basicity often show impressive performance in chemical processes, so it is important to enhance the basicity of ILs by molecular design. Here, we proposed two effective ways to enhance the basicity of ILs: by weakening the cation-anion interaction strength and by employing the anion-tethered strategy. Notably, two quantum-chemical parameters, the most negative surface electrostatic potential and the lowest surface average local ionization energy, were adopted as powerful tools to demonstrate the electrostatic and covalent aspects of basicity, respectively, at the microscopic level. It was shown that, for the ILs with the same anion (acetate or trifluoroacetate), the basicity of the ILs could be enhanced when the cation-anion interaction strength was weakened. For the acetate anion-based ILs, the hydrogen-bonding basicity scale (β) increased by 29% when the cation changed from 1-butyl-3-methylimidazolium ([Bmim]) to tetrabutylphosphonium ([P4444]), achieving one of the highest reported β values for ILs. Moreover, it was also demonstrated that, when an amine group was tethered to the anion of the IL, its basicity was stronger than when it was tethered to the cation. These results are highly instructive for designing ILs with strong basicity and for improving the efficiency of IL-based processes, such as CO2 capture, SO2 and acetylene absorption, dissolution of cellulose, extraction of bioactive compounds, and so on.


Journal of Physical Chemistry B | 2012

Differential Solubility of Ethylene and Acetylene in Room-Temperature Ionic Liquids: A Theoretical Study

Xu Zhao; Huabin Xing; Qiwei Yang; Rulong Li; Baogen Su; Zongbi Bao; Yiwen Yang; Qilong Ren

The room-temperature ionic liquids (RTILs) have potential in realizing the ethylene (C(2)H(4)) and acetylene (C(2)H(2)) separation and avoiding solvent loss and environmental pollution compared with traditional solvents. The interaction mechanisms between gases and RTILs are important for the exploration of new RTILs for gas separation; thus, they were studied by quantum chemical calculation and molecular dynamics simulation in this work. The optimized geometries were obtained for the complexes of C(2)H(4)/C(2)H(2) with anions (Tf(2)N(-), BF(4)(-), and OAc(-)), cation (bmim(+)), and their ion pairs, and the analysis for geometry, interaction energy, natural bond orbital (NBO), and atoms in molecules (AIM) was performed. The quantum chemical calculation results show that the hydrogen-bonding interaction between the gas molecule and anion is the dominant factor in determining the solubility of C(2)H(2) in RTILs. However, the hydrogen-bonding interaction, the p-π interaction in C(2)H(4)-anion, and the π-π interaction in C(2)H(4)-cation are weak and comparable, which all affect the solubility of C(2)H(4) in RTILs with comparable contribution. The calculated results for the distance of H(gas)···X (X = O or F in anions), the BSSE-corrected interaction energy, the electron density of H(gas)···X at the bond critical point (ρ(BCP)), and the relative second-order perturbation stabilization energy (E(2)) are consistent with the experimental data that C(2)H(2) is more soluble than C(2)H(4) in the same RTILs and the solubility of C(2)H(4) in RTILs has the following order: [bmim][Tf(2)N] > [bmim][OAc] > [bmim][BF(4)]. The calculated results also agree with the order of C(2)H(2) solubility in different RTILs that [bmim][OAc] > [bmim][BF(4)] > [bmim][Tf(2)N]. Furthermore, the calculation results indicate that there is strong C(2)H(2)-RTIL interaction, which cannot be negligible compared to the RTIL-RTIL interaction; thus, the regular solution theory is probably not suitable to correlate C(2)H(2) solubility in RTILs. The molecular dynamics simulation results show that the hydrogen bond between the H in C2 of the imidazolium cation and the anion will weaken the hydrogen-bonding interaction of the gas molecule and anion in a realistic solution condition, especially in the C(2)H(4)-RTIL system.


RSC Advances | 2014

Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures

Ganggang Chang; Zongbi Bao; Qilong Ren; Shuguang Deng; Zhiguo Zhang; Baogen Su; Huabin Xing; Yiwen Yang

Various amounts of Cu+ nanoparticles were successfully deposited to the pores of metal–organic frameworks MIL-101 with a double-solvent method. An optimized, cuprous-loaded MIL-101 was shown to have an enhanced ethylene adsorption capacity and higher ethylene–ethane selectivity (14.0), compared to pure MIL-101 (1.6). The great improvement in selectivity can be attributed to the newly generated nano-sized cuprous chloride particles that can selectively interact with the carbon–carbon double bond in ethylene through π-complexation.


Chinese Journal of Chemical Engineering | 2013

Recent Advances in Separation of Bioactive Natural Products

Qilong Ren; Huabin Xing; Zongbi Bao; Baogen Su; Qiwei Yang; Yiwen Yang; Zhiguo Zhang

Abstract Bioactive natural products are a main source of new drugs, functional foods and food additives. The separation of bioactive natural products plays an important role in transformation and use of biomass. The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products, so a series of extraction and separation techniques have been developed. This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coefficients, recent extraction techniques and isolation techniques. This overview of recent technological advances, discussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.


Journal of Agricultural and Food Chemistry | 2012

Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction

Yifeng Cao; Huabin Xing; Qiwei Yang; Zongbi Bao; Baogen Su; Yiwen Yang; Qilong Ren

The separation of a compound of interest from its structurally similar homologues is an important and challenging problem in producing high-purity natural products, such as the separation of genistein from other soybean isoflavone aglycone (SIA) homologues. The present work provided a novel method for separating genistein from its structurally similar homologues by ionic liquid (IL)-based liquid-liquid extraction using hydrophobic IL-water or hydrophilic IL/water-ethyl acetate biphasic systems. Factors that influence the distribution equilibrium of SIAs, including the structure and concentration of IL, pH value of the aqueous phase, and temperature, were investigated. Adequate distribution coefficients and selectivities over 7.0 were achieved with hydrophilic IL/water-ethyl acetate biphasic system. Through a laboratory-scale simulation of fractional extraction process containing four extraction stages and four scrubbing stages, genistein was separated from the SIA homologues with a purity of 95.3% and a recovery >90%.

Collaboration


Dive into the Zongbi Bao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Banglin Chen

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge