Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yixuan Fan is active.

Publication


Featured researches published by Yixuan Fan.


Reproduction in Domestic Animals | 2015

Expression of Mitochondria-Associated Genes (PPARGC1A, NRF-1, BCL-2 and BAX) in Follicular Development and Atresia of Goat Ovaries

Guomin Zhang; Yongjie Wan; Y. Zhang; S. Lan; Ruoxin Jia; Zhen Wang; Yixuan Fan; Feng Wang

Most follicles undergo atresia during the developmental process. Follicular atresia is predominantly regulated by apoptosis of granulosa cells, but the mechanism underlying apoptosis via the mitochondria-dependent apoptotic pathway is unclear. We aimed to investigate whether the mitochondria-associated genes peroxisome proliferator-activated receptor-gamma, coactivator1-alpha (PPARGC1A), nuclear respiratory factor-1 (NRF-1), B-cell CLL/lymphoma 2 (BCL-2) and BCL2-associated X protein (BAX) played a role in follicular atresia through this pathway. The four mitochondria-associated proteins (PGC-1α, which are encoded by the PPARGC1A gene, NRF-1, BCL-2 and BAX) mainly expressed in granulosa cells. The mRNA and protein levels of PPARGC1A/PGC-1α and NRF-1 in granulosa cells increased with the follicular development. These results showed that these genes may play a role in the regulation of the follicular development. In addition, compared with healthy follicles, the granulosa cell in atretic follicles had a reduced expression of NRF-1, increased BAX expression and increased ratio of BAX to BCL-2 expression. These results suggested that changes of the mitochondria-associated gene expression patterns in granulosa cells may lead to follicular atresia during goat follicle development.


Theriogenology | 2013

Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells

Zhengrong Zhou; Bushuai Zhong; Ruoxin Jia; Yongjie Wan; Yanli Zhang; Yixuan Fan; Lizhong Wang; Jihao You; Ziyu Wang; Feng Wang

Myostatin, a member of the transforming growth factor-β family, acts as a negative regulator of skeletal muscle mass. In this study, myostatin-targeted caprine fibroblasts were obtained and subjected to SCNT to determine whether myostatin-knockout goats could be created. Fibroblasts from a 2-mo-old goat were transfected with a myostatin-targeted vector to prepare transgenic donor cells for nuclear transfer. After serum-starvation (for synchronization of the cell cycle), the percentage of transgenic fibroblasts in the G(0)/G(1) phase increased (66.2% vs. 82.9%; P < 0.05) compared with that in the control group, whereas the apoptosis rate and mitochondrial membrane potential were unaffected (P > 0.05). There were no significant differences between in vivo- and in vitro-matured oocytes as recipient cytoplasts for rates of fusion (86.5% vs. 78.4%), pregnancy (21.6% vs. 16.7%), or kidding (2.7% vs. 0%). One female kid from an in vivo-matured oocyte was born, but died a few hours later. Microsatellite analysis and polymerase chain reaction identification confirmed that this kid was genetically identical to the donor cells. Based on Western blot analysis, myostatin of the cloned kid was not expressed compared with that of nontransgenic kids. In conclusion, SCNT using myostatin-targeted 2-mo-old goat fibroblasts as donors has potential as a method for producing myostatin-targeted goats.


Journal of Animal Science | 2012

Follicular development and expression of nuclear respiratory factor-1 and peroxisome proliferator-activated receptor γ coactivator-1 alpha in ovaries of fetal and neonatal doelings.

Zhengrong Zhou; Yongjie Wan; Y. Zhang; Zhen Wang; Ruoxin Jia; Yixuan Fan; Haitao Nie; Shijia Ying; P. Huang; Feng Wang

In livestock, the ovarian reserve of follicles is established during the fetal stage. However, at least two-thirds of the oocytes present in the reserve die because of apoptosis before birth. Notably, mitochondria have been reported to play a crucial role in the fate (life/death) of oocytes. In this study, mitochondrial regulators nuclear respiratory factor-1 (NRF-1) and PPAR γ coactivator-1 alpha (PGC-1α) were examined during this period of follicle development to investigate their effects on follicular development and apoptosis. Fetal and neonatal Capra haimen were used, ranging in age from 60 d postcoitum (dpc) to 30 d postpartum (dpp). Our data demonstrated that egg nests were the earliest recognizable gamete cells in ovaries of fetal and neonatal doelings. Proportions of egg nests decreased from 92.68 to 25.08% whereas single follicles increased from 7.32 to 74.92% between 60 and 120 dpc. Subsequently, between 90 and 120 dpc, the proportion of primordial follicles increased from 9.98 to 61.56% (P < 0.01). However, it did not change between 1 and 30 dpp (P = 0.12). The proportion of primary follicles increased from 1.23 to 37.93% between 90 dpc to 1 dpp (P = 0.01) but did not change between 1 and 30 dpp (P = 0.11). Meanwhile, proportions of secondary and tertiary follicles increased in an age-dependent manner. In addition, results of this study suggested that NRF-1 and PGC-1α proteins are mainly localized in germ cells of egg nests, cytoplasm of oocytes, and granulosa cells of follicles ranging from primordial to tertiary follicles. The transcript abundance of NRF-1 mRNA was up-regulated in 60-dpc-old ovaries compared with 1-dpp-old ovaries (P < 0.05), but the PGC-1α mRNA expression pattern did not change (P = 0.05). Nevertheless, the number of terminal deoxynucleotidyltransferase UTP nick-end labeling (TUNEL) positive cells and caspase-3 activity in 60-dpc-old ovaries was less than those in 1-dpp-old ovaries (P < 0.01, P = 0.01). In conclusion, our results demonstrate that the key stage of primordial follicle formation is between 90 and 120 dpc in Capra haimen. Also, this study suggests that NRF-1 and PGC-1α might have roles in cell apoptosis during ovarian development of fetal and neonatal Capra haimen. These results improve our understanding of apoptotic mechanisms in oogenesis and folliculogenesis.


In Vitro Cellular & Developmental Biology – Animal | 2012

Isolation, characterization, and gene modification of dairy goat mesenchymal stem cells from bone marrow

Yanli Zhang; Yixuan Fan; Ziyu Wang; Yongjie Wan; Zhengrong Zhou; Bushuai Zhong; Lizhong Wang; Feng Wang

Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an attractive cell type for therapy models and for nuclear transfer transgenesis. To date, MSCs from various species have been studied, but only a limited amount of information regarding dairy goat MSCs (gMSCs) is available. The objectives of this study were to isolate, induce the multilineage mesenchymal differentiation, and investigate the gene modification efficiency of gMSCs, thereby initiating further research on these cells. The gMSCs isolated from bone marrow grew, attached to plastic with a typical fibroblast-like morphology, and expressed the mesenchymal surface marker CD44, CD29, CD90, and CD166, but not the hematopoietic marker CD45. Furthermore, the gMSCs expressed the transcription factors Oct-4 and Nanog, which have been shown to be critical for stem cell self-renewal and pluripotency. The multilineage differentiation potential of gMSCs was revealed by their ability to undergo adipogenic and osteogenic differentiation when exposed to specific inducing conditions. Transient transduction of gMSCs with a plasmid containing the GFP gene resulted in higher transfection rate compared with fetal fibroblasts (FFs). Furthermore, cell colonies with stable genetic modifications were obtained when gMSCs were transfected with a mammary-specific expression vector containing human lysosomal acid beta-glucosidase gene (hGCase). In conclusion, these results demonstrated that typical mesenchymal stem cells were isolated from dairy goat bone marrow, possessed the characteristics of pluripotent stem cells, and had the potential of specific genetic modifications for gene therapy and producing transgenic goats.


Cell Biology International | 2015

Ectopic expression of DAZL gene in goat bone marrow‐derived mesenchymal stem cells enhances the trans‐differentiation to putative germ cells compared to the exogenous treatment of retinoic acid or bone morphogenetic protein 4 signalling molecules

Guangyao Yan; Yixuan Fan; Peizhen Li; Yanli Zhang; Feng Wang

The plasticity of human and murine bone marrow mesenchymal stem cells (BMSCs) has been proven by their ability to trans‐differentiate to multilineage cells, including germ cells. We have investigated ability of goat BMSCs to trans‐differentiate to germ cells with extrinsic (e.g., retinoic acid [RA] and BMP4 signalling molecules) and intrinsic factor expression (e.g., DAZL gene ectopic expression). Having optimized the concentration of RA and BMP4, gBMSCs were treated with RA 1 µM) and BMP4 (25 ng/mL), individually and collectively. Both RA and BMP4 induced OCT4, MVH, DAZL, STELLA, NANOG and C‐KIT expression, but RNF17, PIWIL2, STRA8, and SCP3 were only expressed after RA treatment. In terms of an endogenous factor, a germ cell specific gene, deleted in Azoospermia‐like (DAZL), was overexpressed by plasmid and mRNA techniques. Compared with the RA treated group, DAZL ectopic expression upregulated the transcription and translation of MVH, and SCP3 was also increased at the mRNA level. The mRNA‐based method had more effect on the germ cells gene expression compared to the plasmid method. Ectopic expression of the DAZL gene enhanced trans‐differentiation compared to the RA‐treated group. Knockdown experiments confirmed the pivotal role of DAZL in germ cell differentiation. This study provides further information on the mechanisms underlying the spermatogenesis, which will guide the derivation of post‐meiotic germ cells from adult stem cells in vitro.


Genes | 2017

Genome-Wide Analysis Reveals Extensive Changes in LncRNAs during Skeletal Muscle Development in Hu Sheep

Caifang Ren; Mingtian Deng; Yixuan Fan; Hua Yang; Guomin Zhang; Xu Feng; Fengzhe Li; Dan Wang; Feng Wang; Yanli Zhang

As an important type of noncoding RNA molecules, long non-coding RNAs (lncRNAs) act as versatile players in various biological processes. However, little is known about lncRNA regulators during sheep muscle growth. To explore functional lncRNAs during sheep muscle growth, we systematically investigated lncRNAs using strand-specific Ribo-Zero RNA sequencing at three key developmental stages in Hu sheep. A total of 6924 lncRNAs were obtained, and the differentially expressed lncRNAs and genes were screened from (control vs. experiment) fetus vs. lamb, lamb vs. adult, and fetus vs. adult comparisons, respectively. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis results correlated well with the sequencing data. Moreover, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases showed that the target genes of the differentially expressed lncRNAs were significantly enriched in organ morphogenesis, skeletal system development as well as response to stimulus and some other terms related to muscle. Furthermore, a co-expression network of the differentially expressed target genes and lncRNAs was constructed and well-known muscle growth regulators such as retrotransposon-like 1 and Junctophilin-2 were included. Finally, we investigated the expression profiles of seven lncRNAs and their target genes, and found that they played vital roles in muscle growth. This study extends the sheep muscle lncRNA database and provides novel candidate regulators for future genetic and molecular studies on sheep muscle growth, which is helpful for optimizing the production of mutton.


Biochemical and Biophysical Research Communications | 2015

A novel fluorescence reporter system for the characterization of dairy goat mammary epithelial cells.

Lizhong Wang; Caifang Ren; Jihao You; Yixuan Fan; Yongjie Wan; Yanli Zhang; Feng Wang; Mingrui Huang

Goat mammary epithelial cells (GMECs) are a useful model to understand the physiological function of mammary glands and to assess the efficiency of mammary-specific vectors. The aim of this study was to develop an effective and convenient way to evaluate the secretory capacity of GMECs in primary culture. In this study, we developed a reporter system using fluorescent proteins driven by the CSN2 (Capra hircus beta-casein) gene promoter to detect the secretory capacity of GMECs. Additionally, we evaluated the efficiency of the reporter system by determining the expression of cytoskeletal proteins and beta-casein protein. The results suggest that this reporter system provides an easy, convenient and effective method to detect the function of milk synthesis in GMECs. Primary cultures of GMECs were homogeneous and retained the function of milk synthesis, prompting their usefulness as a model for further studies.


Gene | 2016

Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

Yixuan Fan; Caifang Ren; Zhibo Wang; Ruoxin Jia; Dan Wang; Yanli Zhang; Guomin Zhang; Yongjie Wan; Mingrui Huang; Feng Wang

The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism.


Animal Production Science | 2015

Effect of residual feed intake phenotype–nutritional treatment interaction on the growth performance, plasma metabolic variables and somatotropic axis gene expression of growing ewes

Haitao Nie; Zhen Wang; S. Lan; Hao Zhang; Yongjie Wan; Yixuan Fan; Y. Zhang; Feng Wang

This study aimed to evaluate the effect of residual feed intake (RFI) phenotype and nutritional treatment interaction on the growth performance, plasma variables and gene expression levels within the somatotropic axis. Growing ewes [n = 52, initial bodyweight (BW) = 17.5 ± 0.5 kg, 2 months of age] were offered ad libitum access to diets for 63 days and ranked based on RFI phenotype. Thirty ewes with the highest and lowest RFI values were selected and randomly assigned to three nutritional treatments based on dry matter intake (DMI), which are ad libitum (AL), low restriction (LR) and high restriction (HR) groups, respectively. Each nutritional treatment group included ewes with high (n = 5) and low RFI (n = 5) values. During nutritional treatment (from Day 64 to Day 138), plasma samples were obtained to measure metabolite and hormone concentrations. Tissues of the hypothalamus, pituitary, liver, and Longissimus dorsi muscle (LM) were harvested at the end of the experiment (Day 138) to measure the gene expression level within the somatotropic axis. Muscle growth hormone receptor mRNA abundance of low RFI ewes tended to be greater (P = 0.09) under AL feeding, but this difference was abolished by underfeeding (P > 0.10). Low RFI ewes under HR treatment showed slightly greater growth performance, which was accompanied with lower pituitary somatostain receptor 2 mRNA abundance (P < 0.05), plasma non-esterified fatty acid concentration (P < 0.05), and greater concentration of triglyceride (P < 0.05), compared with ewes classified as high RFI group. Our results suggested that ewes categorised as low RFI showed higher resistance to the condition of high feed restriction, which might be attributed to less intensity of fat mobilisation under negative energy balance. The mechanism underlying resistance to such feed restriction was presumably through action of somatostain receptor 2 and was potentially mediated by inhibitory effects of somatostatin on growth hormone release but not basal growth hormone secretion.


African Journal of Biotechnology | 2011

In vitro differentiation of mouse embryonic stem cells into functional hepatocytes by sodium butyrate, hepatocyte growth factor and dexamethasone under chemically defined conditions

Yibo Yan; Bushuai Zhong; Weiwei Qi; Yang Song; Yongcong Wu; Yixuan Fan; Feng Wang

Studies have shown that embryonic stem (ES) cells can be successfully differentiated into liver cells, which offer the potential unlimited cell source for a variety of end-stage liver disease. In our study, in order to induce mouse ES cells to differentiate into hepatocyte-like cells under chemically defined conditions, ES cells were induced by sodium butyrate as inducer for 7 days in the first phase, followed by the combination of hepatocyte growth factor and dexamethasone as inducers for 12 days in the second phase based on an adherent culture system with a two-step induction. The results from the morphology, gene expression, protein molecular markers and cell function of ES-D3 cells derived hepatocyte-like cells demonstrated that mES cells can be differentiated efficiently in vitro to functional hepatocytes under chemically defined conditions, which might be useful as an in vitro system for hepatocyte transplantation therapy and toxicity screening in drug discovery. Key words : Embryonic stem cells, hepatic-like cells, in vitro differentiation, sodium butyrate, hepatocyte growth factor, dexamethason.

Collaboration


Dive into the Yixuan Fan's collaboration.

Top Co-Authors

Avatar

Feng Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guomin Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanli Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongjie Wan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haitao Nie

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yixuan Guo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhen Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ziyu Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Caifang Ren

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ruoxin Jia

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge