Yongjie Wan
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongjie Wan.
Theriogenology | 2010
Yanli Zhang; Yongjie Wan; Zhen Wang; D. Xu; X.S. Pang; Li Meng; Lizhong Wang; Bushuai Zhong; Feng Wang
Expression of recombinant human lysosomal acid beta-glucosidase (hGCase) by a transgenic animal bioreactor, using somatic cell nuclear transfer (SCNT), would decrease the cost of producing this product. The objective was to establish an effective procedure to prepare hGCase transgenic donor cells and nuclear transfer (NT) embryos to produce hGCase protein in the Saanen dairy goat mammary gland. A mammary-specific expression vector for hGCase was constructed and transfected into HC-11 mammary epithelial cells for bioactivity analysis in vitro; mRNA transcripts and hGCase protein were correctly expressed in transfected HC-11 cells. The hGCase gene was then introduced into fetal fibroblasts (from dairy goats) to prepare competent transgenic donor cells. Transgenic fibroblast clones from a single round of transfection were reliably isolated by 96-well cell culture plates and screened with PCR amplification and chromosomal counting (66.8%). Dairy goat cloned embryos were produced from these hGCase fetal cells by SCNT, the hGCase transgene was successfully detected in these embryos, and there were similar rates (P>0.05) of fusion (83.3% vs. 77.8%), cleavage (89.1% vs. 90.9%), and development to the morula/blastocyst stages (36.4% vs. 38.9%) between NT embryos using transgenic fetal fibroblasts and non-transfected control cells. Moreover, 98 well-developed reconstructed embryos derived from transgenic cells were transferred to 16 recipients; pregnancy was confirmed at 40 d in two goats. Therefore, we achieved functional expression of hGCase in mammary gland cells and normal development to Day 40 of cloned embryos carrying the hGCase gene.
Scientific Reports | 2016
Rihong Guo; Yongjie Wan; Dan Xu; Libin Cui; Mingtian Deng; Guomin Zhang; Ruoxin Jia; Wenjun Zhou; Zhen Wang; Kaiping Deng; Mingrui Huang; Feng Wang; Yanli Zhang
Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes.
Theriogenology | 2013
Guomin Zhang; Chen-Hao Gu; Yanli Zhang; Hong-Yan Sun; Wei-Ping Qian; Zhengrong Zhou; Yongjie Wan; Ruoxin Jia; Lizhong Wang; Feng Wang
Oocyte aging severely decreases the quality of oocytes, which hampers fertilization and subsequent embryo development. In the present study, age-dependent molecular changes in goat oocytes were investigated. First, the quality of goat oocytes with various in vitro culture times (24, 30, 36, 48, and 60 hours) was evaluated on the basis of developmental rates of parthenogenetically activated embryos and apoptosis of cumulus cells (CCs). Second, relative gene expression of six genes (mitochondrial genes: PGC-1α and NRF-1; epigenetic modification genes: SNRPN and HAT1; mitotic spindle checkpoint protein: SMAD2; and hyaluronan synthase gene: HAS3) were analyzed during oocyte aging. Third, we further studied the changes of seven genes (PGC-1α and NRF-1; apoptotic-related genes: BAX and BCL2; hyaluronan synthase gene: HAS2; metabolism-related gene: STAR; and superoxide dismutase gene: SOD1) in CCs during oocyte aging. In these studies, the blastocyst rate gradually decreased and the number of apoptotic cells significantly increased as the culture time increased (P < 0.05). Moreover, relative gene expressions of PGC-1α, NRF-1 and SMAD2 significantly decreased from 24 to 36 hours (P < 0.05), whereas the levels of HAT1 and HAS3 slowly increased as culture was prolonged. Furthermore, the levels of PGC-1α, BCL2, HAS2 and SOD1 quickly reduced, and BAX significantly increased from 24 to 36 hours in aged CCs (P < 0.05). In conclusion, goat oocytes started to age at 30 hours in vitro culture, and gene expression patterns of oocytes and CCs significantly changed as the oocytes aged. Gene expression pattern changes in CCs may provide a convenient and effective way to detect oocyte aging without compromising oocyte integrity.
PLOS ONE | 2013
Li Meng; Yongjie Wan; Yanyan Sun; Yanli Zhang; Ziyu Wang; Yang Song; Feng Wang
Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future.
Theriogenology | 2012
Yongjie Wan; Yanli Zhang; Zhengrong Zhou; Ruoxin Jia; Meng Li; Hui Song; Ziyu Wang; Lizhong Wang; Guomin Zhang; Jihao You; Feng Wang
The objective was to investigate the effects of the transgenic donor cell synchronization method, oocyte sources, and other factors, on production of hLF-gene nucleus transfer dairy goats. Three transfected cell lines from ear biopsies from three 3-mo-old Saanen dairy goats (designated Number 1, Number 2, and Number 3, respectively) were selected as karyoplast donors for somatic cell nuclear transfer (SCNT) after detailed identification (including PCR and sequencing of PCR products). In donor cell cycle synchronization studies, the apoptosis rate of hLF transgenic fibroblasts was not different (P > 0.05) after 3 days of serum starvation or 2 days of contact inhibition. Additionally, there was no effect (P > 0.05) on developmental capacity of reconstructed embryos; however, the kidding rate of recipients in the serum starvation group was higher than that in the contact inhibition group (18 vs. 0%, respectively). The production efficiency of the transgenic cloned goats using donor cells from the Number 1 dairy goat cell line was higher than those using the Number 2 and the Number 3 cell lines (kidding rates were 18, 2, and 0%, respectively, P < 0.05). The oocyte source did not significantly affect the pregnancy rate of hLF-transgenic cloned dairy goats, but more fetuses were aborted when using in vitro matured oocytes compared to in vivo matured oocytes. In summary, utilizing transfected 3-mo-old dairy goat fibroblasts as donor cells, seven live offspring were produced, and the hLF gene was successfully integrated. This study provided additional insights into preparation of donor cells and recipient oocytes for producing transgenic cloned goats through SCNT.
Reproduction in Domestic Animals | 2015
Guomin Zhang; Yongjie Wan; Y. Zhang; S. Lan; Ruoxin Jia; Zhen Wang; Yixuan Fan; Feng Wang
Most follicles undergo atresia during the developmental process. Follicular atresia is predominantly regulated by apoptosis of granulosa cells, but the mechanism underlying apoptosis via the mitochondria-dependent apoptotic pathway is unclear. We aimed to investigate whether the mitochondria-associated genes peroxisome proliferator-activated receptor-gamma, coactivator1-alpha (PPARGC1A), nuclear respiratory factor-1 (NRF-1), B-cell CLL/lymphoma 2 (BCL-2) and BCL2-associated X protein (BAX) played a role in follicular atresia through this pathway. The four mitochondria-associated proteins (PGC-1α, which are encoded by the PPARGC1A gene, NRF-1, BCL-2 and BAX) mainly expressed in granulosa cells. The mRNA and protein levels of PPARGC1A/PGC-1α and NRF-1 in granulosa cells increased with the follicular development. These results showed that these genes may play a role in the regulation of the follicular development. In addition, compared with healthy follicles, the granulosa cell in atretic follicles had a reduced expression of NRF-1, increased BAX expression and increased ratio of BAX to BCL-2 expression. These results suggested that changes of the mitochondria-associated gene expression patterns in granulosa cells may lead to follicular atresia during goat follicle development.
Theriogenology | 2013
Zhengrong Zhou; Bushuai Zhong; Ruoxin Jia; Yongjie Wan; Yanli Zhang; Yixuan Fan; Lizhong Wang; Jihao You; Ziyu Wang; Feng Wang
Myostatin, a member of the transforming growth factor-β family, acts as a negative regulator of skeletal muscle mass. In this study, myostatin-targeted caprine fibroblasts were obtained and subjected to SCNT to determine whether myostatin-knockout goats could be created. Fibroblasts from a 2-mo-old goat were transfected with a myostatin-targeted vector to prepare transgenic donor cells for nuclear transfer. After serum-starvation (for synchronization of the cell cycle), the percentage of transgenic fibroblasts in the G(0)/G(1) phase increased (66.2% vs. 82.9%; P < 0.05) compared with that in the control group, whereas the apoptosis rate and mitochondrial membrane potential were unaffected (P > 0.05). There were no significant differences between in vivo- and in vitro-matured oocytes as recipient cytoplasts for rates of fusion (86.5% vs. 78.4%), pregnancy (21.6% vs. 16.7%), or kidding (2.7% vs. 0%). One female kid from an in vivo-matured oocyte was born, but died a few hours later. Microsatellite analysis and polymerase chain reaction identification confirmed that this kid was genetically identical to the donor cells. Based on Western blot analysis, myostatin of the cloned kid was not expressed compared with that of nontransgenic kids. In conclusion, SCNT using myostatin-targeted 2-mo-old goat fibroblasts as donors has potential as a method for producing myostatin-targeted goats.
Journal of Animal Science | 2012
Zhengrong Zhou; Yongjie Wan; Y. Zhang; Zhen Wang; Ruoxin Jia; Yixuan Fan; Haitao Nie; Shijia Ying; P. Huang; Feng Wang
In livestock, the ovarian reserve of follicles is established during the fetal stage. However, at least two-thirds of the oocytes present in the reserve die because of apoptosis before birth. Notably, mitochondria have been reported to play a crucial role in the fate (life/death) of oocytes. In this study, mitochondrial regulators nuclear respiratory factor-1 (NRF-1) and PPAR γ coactivator-1 alpha (PGC-1α) were examined during this period of follicle development to investigate their effects on follicular development and apoptosis. Fetal and neonatal Capra haimen were used, ranging in age from 60 d postcoitum (dpc) to 30 d postpartum (dpp). Our data demonstrated that egg nests were the earliest recognizable gamete cells in ovaries of fetal and neonatal doelings. Proportions of egg nests decreased from 92.68 to 25.08% whereas single follicles increased from 7.32 to 74.92% between 60 and 120 dpc. Subsequently, between 90 and 120 dpc, the proportion of primordial follicles increased from 9.98 to 61.56% (P < 0.01). However, it did not change between 1 and 30 dpp (P = 0.12). The proportion of primary follicles increased from 1.23 to 37.93% between 90 dpc to 1 dpp (P = 0.01) but did not change between 1 and 30 dpp (P = 0.11). Meanwhile, proportions of secondary and tertiary follicles increased in an age-dependent manner. In addition, results of this study suggested that NRF-1 and PGC-1α proteins are mainly localized in germ cells of egg nests, cytoplasm of oocytes, and granulosa cells of follicles ranging from primordial to tertiary follicles. The transcript abundance of NRF-1 mRNA was up-regulated in 60-dpc-old ovaries compared with 1-dpp-old ovaries (P < 0.05), but the PGC-1α mRNA expression pattern did not change (P = 0.05). Nevertheless, the number of terminal deoxynucleotidyltransferase UTP nick-end labeling (TUNEL) positive cells and caspase-3 activity in 60-dpc-old ovaries was less than those in 1-dpp-old ovaries (P < 0.01, P = 0.01). In conclusion, our results demonstrate that the key stage of primordial follicle formation is between 90 and 120 dpc in Capra haimen. Also, this study suggests that NRF-1 and PGC-1α might have roles in cell apoptosis during ovarian development of fetal and neonatal Capra haimen. These results improve our understanding of apoptotic mechanisms in oogenesis and folliculogenesis.
In Vitro Cellular & Developmental Biology – Animal | 2012
Yanli Zhang; Yixuan Fan; Ziyu Wang; Yongjie Wan; Zhengrong Zhou; Bushuai Zhong; Lizhong Wang; Feng Wang
Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an attractive cell type for therapy models and for nuclear transfer transgenesis. To date, MSCs from various species have been studied, but only a limited amount of information regarding dairy goat MSCs (gMSCs) is available. The objectives of this study were to isolate, induce the multilineage mesenchymal differentiation, and investigate the gene modification efficiency of gMSCs, thereby initiating further research on these cells. The gMSCs isolated from bone marrow grew, attached to plastic with a typical fibroblast-like morphology, and expressed the mesenchymal surface marker CD44, CD29, CD90, and CD166, but not the hematopoietic marker CD45. Furthermore, the gMSCs expressed the transcription factors Oct-4 and Nanog, which have been shown to be critical for stem cell self-renewal and pluripotency. The multilineage differentiation potential of gMSCs was revealed by their ability to undergo adipogenic and osteogenic differentiation when exposed to specific inducing conditions. Transient transduction of gMSCs with a plasmid containing the GFP gene resulted in higher transfection rate compared with fetal fibroblasts (FFs). Furthermore, cell colonies with stable genetic modifications were obtained when gMSCs were transfected with a mammary-specific expression vector containing human lysosomal acid beta-glucosidase gene (hGCase). In conclusion, these results demonstrated that typical mesenchymal stem cells were isolated from dairy goat bone marrow, possessed the characteristics of pluripotent stem cells, and had the potential of specific genetic modifications for gene therapy and producing transgenic goats.
Cell Biology International | 2016
Yongjie Wan; Mingtian Deng; Guomin Zhang; Caifang Ren; Hao Zhang; Yanli Zhang; Lizhong Wang; Feng Wang
Somatic cell nuclear transfer (SCNT) is a useful way to produce cloned animals. However, SCNT animals exhibit DNA methylation and genomic imprinting abnormalities. These abnormalities may be due to the faulty epigenetic reprogramming of donor cells. To investigate the consequence of SCNT on the genomic imprinting and global methylation in the donor cells, growth patterns and apoptosis of cloned goat fibroblast cells (CGFCs) at passage 7 were determined. Growth patterns in CGFCs were similar to the controls; however, the growth rate in log phase was lower and apoptosis in CGFCs were significantly higher (P < 0.01). In addition, quantitative expression analysis of three DNA methyltransferases (Dnmt) and two imprinted genes (H19, IGF2R) was conducted in CGFCs: Dnmt1 and Dnmt3b expression was significantly reduced (P < 0.01), and H19 expression was decreased sixfold (P < 0.01); however, the expression of Dnmt3a was unaltered and IGF2R expression was significantly increased (P < 0.05). Finally, we used bisulfite sequencing PCR to compare the DNA methylation patterns in differentially methylated regions (DMRs) of H19 and IGF2R. The DMRs of H19 (P < 0.01) and IGF2R (P < 0.01) were both highly methylated in CGFCs. These results indicate that the global genome might be hypomethylated. Moreover, there is an aberrant expression of imprinted genes and DMR methylation in CGFCs.