Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ykelien L. Boersma is active.

Publication


Featured researches published by Ykelien L. Boersma.


Current Opinion in Biotechnology | 2011

DARPins and other repeat protein scaffolds: advances in engineering and applications

Ykelien L. Boersma; Andreas Plückthun

Antibodies have long been regarded as the only class of binding proteins. With the emergence of protein engineering techniques, new binding proteins based on alternative scaffolds have been designed. Additionally, modern technologies for selection and evolution from libraries are independent of the antibody scaffold and could thus be readily used for obtaining specific binding proteins. One important group of alternative scaffolds is based on repeat proteins. Nature is widely using these proteins to modulate protein-protein interactions, and even in the adaptive immune system of jawless vertebrates; the step to their application as an alternative to antibodies seems therefore logical. In this review, progress on DARPins and other repeat protein scaffolds will be discussed. Advances in their design as well as novel applications will be highlighted.


FEBS Journal | 2007

Selection strategies for improved biocatalysts

Ykelien L. Boersma; Melloney J. Dröge; Wim J. Quax

Enzymes have become an attractive alternative to conventional catalysts in numerous industrial processes. However, their properties do not always meet the criteria of the application of interest. Directed evolution is a powerful tool for adapting the characteristics of an enzyme. However, selection of the evolved variants is a critical step, and therefore new strategies to enable selection of the desired enzymatic activity have been developed. This review focuses on these novel strategies for selecting enzymes from large libraries, in particular those that are used in the synthesis of pharmaceutical intermediates and pharmaceuticals.


Journal of Biological Chemistry | 2011

Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling

Ykelien L. Boersma; Ginger Chao; Daniel Steiner; K. Dane Wittrup; Andreas Plückthun

Background: The EGF receptor (EGFR) is an important therapeutic target. Results: Bispecific anti-EGFR designed ankyrin repeat proteins (DARPins), alternative targeting molecules efficiently produced in bacteria, were shown to inhibit A431 cell proliferation and receptor recycling. Conclusion: One bispecific construct containing four DARPins showed a biological activity superior to that of the registered antibody cetuximab. Significance: Bispecific DARPins may form building blocks for tomorrows cancer therapeutics. The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the search for robust targeting molecules that can be equipped with new effector functions or show a new mechanism of action. Designed ankyrin repeat proteins (DARPins) may provide the targeting component for such novel reagents. Previously, four DARPins were selected against EGFR with (sub)nanomolar affinity. As any targeting module should preferably be able to inhibit EGFR-mediated signaling, their effect on A431 cells overexpressing EGFR was examined: three of them were shown to inhibit proliferation by inducing G1 arrest, as seen for the Food and Drug Administration-approved antibody cetuximab. To understand this inhibitory mechanism, we mapped the epitopes of the DARPins using yeast surface display. The epitopes for the biologically active DARPins overlapped with the EGF-binding site, whereas the fourth DARPin bound to a different domain, explaining the lack of a biological effect. To optimize the biological activity of the DARPins, we combined two DARPins binding to different epitopes with a flexible linker or with a leucine zipper, leading to a homodimer. The latter DARPin was able to reduce surface EGFR by inhibiting receptor recycling, leading to a dramatic decrease in cell viability. These results indicate that multispecific EGFR-specific DARPins are superior to cetuximab and may form the basis of new opportunities in tumor targeting and tumor therapy.


ChemBioChem | 2006

Directed Evolution of Bacillus subtilis Lipase A by Use of Enantiomeric Phosphonate Inhibitors: Crystal Structures and Phage Display Selection

Melloney J. Dröge; Ykelien L. Boersma; Gertie van Pouderoyen; Titia E. Vrenken; Carsten J. Rüggeberg; Manfred T. Reetz; Bauke W. Dijkstra; Wim J. Quax; M.J. Droge

Phage display can be used as a protein‐engineering tool for the selection of proteins with desirable binding properties from a library of mutants. Here we describe the application of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has important properties for the preparation of the pharmaceutically relevant chiral compound 1,2‐O‐isopropylidene‐sn‐glycerol (IPG). PCR mutagenesis with spiked oligonucleotides was employed for saturation mutagenesis of a stretch of amino acids near the active site. After expression of these mutants on bacteriophages, dual selection with (S)‐(+)‐ and (R)‐(−)‐IPG stereoisomers covalently coupled to enantiomeric phosphonate suicide inhibitors (SIRAN Sc and Rc inhibitors, respectively) was used for the isolation of variants with inverted enantioselectivity. The mutants were further characterised by determination of their Michaelis–Menten parameters. The 3D structures of the Sc and Rc inhibitor–lipase complexes were determined and provided structural insight into the mechanism of enantioselectivity of the enzyme. In conclusion, we have used phage display as a fast and reproducible method for the selection of Bacillus lipase A mutant enzymes with inverted enantioselectivity.


ChemBioChem | 2008

A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A

Ykelien L. Boersma; Melloney J. Dröge; Almer M. van der Sloot; Tjaard Pijning; Robbert H. Cool; Bauke W. Dijkstra; Wim J. Quax

In directed evolution experiments, success often depends on the efficacy of screening or selection methods. Genetic selections have proven to be extremely valuable for evolving enzymes with improved catalytic activity, improved stability, or with altered substrate specificity. In contrast, enantioselectivity is a difficult parameter to select for. In this study, we present a successful strategy that not only selects for catalytic activity, but for the first time also for enantioselectivity, as demonstrated by the selection of Bacillus subtilis lipase A variants with inverted and improved enantioselectivity. A lipase mutant library in an aspartate auxotroph Escherichia coli was plated on minimal medium that was supplemented with the aspartate ester of the desired enantiomer (S)‐(+)‐1,2‐O‐isopropylidene‐sn‐glycerol. To inhibit growth of less enantioselective variants, a covalently binding phosphonate ester of the opposite (R)‐(−)‐1,2‐O‐isopropylidene‐sn‐glycerol enantiomer was added as well. After three selection rounds in which the selection pressure was increased by raising the phosphonate ester concentration, a mutant was selected with an improved enantioselectivity increased from an ee of −29.6 % (conversion 23.4 %) to an ee of +73.1 % (conversion 28.9 %) towards the (S)‐(+)‐enantiomer. Interestingly, its amino acid sequence showed that the acid of the catalytic triad had migrated to a position further along the loop that connects β7 and αE; this shows that the position of the catalytic acid is not necessarily conserved in this lipase.


Science Signaling | 2014

The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility

Tai Kiuchi; Elena Ortiz-Zapater; James Monypenny; Daniel R. Matthews; Lan K. Nguyen; Jody Barbeau; Oana Coban; Katherine Lawler; Brian Burford; Daniel J. Rolfe; Emanuele de Rinaldis; Dimitra Dafou; Michael A. Simpson; Natalie Woodman; Sarah Pinder; Cheryl Gillett; Viviane Devauges; Simon P. Poland; Gilbert O. Fruhwirth; Pierfrancesco Marra; Ykelien L. Boersma; Andreas Plückthun; William J. Gullick; Yosef Yarden; George Santis; Martyn Winn; Boris N. Kholodenko; Marisa L. Martin-Fernandez; Peter J. Parker; Andrew Tutt

Dimerization of EGFR with an ErbB4 receptor variant increases growth factor–induced migration of breast cancer cells. Drug Resistance Through Dimerization The epidermal growth factor receptor (EGFR) is often targeted in various cancers, including breast cancer. The EGFR can dimerize with related receptors in the ErbB family, and formation of these heterodimers is associated with the development of resistance to EGFR inhibitors. Kiuchi et al. found that binding of EGFR to a naturally occurring variant of the receptor ErbB4 prevented a ubiquitin E3 ligase from associating with EGFR and triggering its breakdown. The migration of breast cancer cells to EGFR ligands was increased when EGFR was overexpressed with the ErbB4 variant, but not with a mutant that could not dimerize with EGFR. Furthermore, the transcript for this ErbB4 variant was increased in a subset of breast cancer patients. The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor–stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2– breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.


Chemistry & Biology | 2008

Loop grafting of Bacillus subtilis lipase A : Inversion of enantioselectivity

Ykelien L. Boersma; Tjaard Pijning; Margriet S. Bosma; Almer M. van der Sloot; Luis F. Godinho; Melloney J. Dröge; Remko T. Winter; Gertie van Pouderoyen; Bauke W. Dijkstra; Wim J. Quax

Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%.


Applied and Environmental Microbiology | 2006

Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities.

Melloney J. Dröge; Ykelien L. Boersma; Peter Braun; Robbert Jan Buining; Mattijs K. Julsing; Karin G. A. Selles; Jan Maarten van Dijl; Wim J. Quax

ABSTRACT Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.


International Journal of Molecular Sciences | 2015

High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives.

Magdalena Wójcik; Aline Telzerow; Wim J. Quax; Ykelien L. Boersma

Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms.


Acta Crystallographica Section D-biological Crystallography | 2014

The structure of vanin 1: a key enzyme linking metabolic disease and inflammation

Ykelien L. Boersma; Janet Newman; Timothy E. Adams; Nathan Cowieson; Guy Krippner; Kiymet Bozaoglu; Thomas S. Peat

Although part of the coenzyme A pathway, vanin 1 (also known as pantetheinase) sits on the cell surface of many cell types as an ectoenzyme, catalyzing the breakdown of pantetheine to pantothenic acid (vitamin B5) and cysteamine, a strong reducing agent. Vanin 1 was initially discovered as a protein involved in the homing of leukocytes to the thymus. Numerous studies have shown that vanin 1 is involved in inflammation, and more recent studies have shown a key role in metabolic disease. Here, the X-ray crystal structure of human vanin 1 at 2.25 Å resolution is presented, which is the first reported structure from the vanin family, as well as a crystal structure of vanin 1 bound to a specific inhibitor. These structures illuminate how vanin 1 can mediate its biological roles by way of both enzymatic activity and protein-protein interactions. Furthermore, it sheds light on how the enzymatic activity is regulated by a novel allosteric mechanism at a domain interface.

Collaboration


Dive into the Ykelien L. Boersma's collaboration.

Top Co-Authors

Avatar

Wim J. Quax

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rein Bos

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Almer M. van der Sloot

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge