Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoann Thomas is active.

Publication


Featured researches published by Yoann Thomas.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Oyster reproduction is affected by exposure to polystyrene microplastics

Rossana Sussarellu; Marc Suquet; Yoann Thomas; Christophe Lambert; Caroline Fabioux; Marie Eve Julie Pernet; Nelly Le Goïc; Virgile Quillien; Christian Mingant; Yanouk Epelboin; Charlotte Corporeau; Julien Guyomarch; Johan Robbens; Ika Paul-Pont; Philippe Soudant; Arnaud Huvet

Significance Plastics are a contaminant of emerging concern accumulating in marine ecosystems. Plastics tend to break down into small particles, called microplastics, which also enter the marine environment directly as fragments from a variety of sources, including cosmetics, clothing, and industrial processes. Given their ubiquitous nature and small dimensions, the ingestion and impact of microplastics on marine life are a cause for concern, notably for filter feeders. Oysters were exposed to polystyrene microparticles, which were shown to interfere with energy uptake and allocation, reproduction, and offspring performance. A drop in energy allocation played a major role in this reproductive impairment. This study provides ground-breaking data on microplastic impacts in an invertebrate model, helping to predict ecological impact in marine ecosystems. Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L−1) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (−38%), diameter (−5%), and sperm velocity (−23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.


Marine Pollution Bulletin | 2010

Spatial and temporal extension of eutrophication associated with shrimp farm wastewater discharges in the New Caledonia lagoon.

Yoann Thomas; Claude Courties; Yasmin El Helwe; Alain Herbland; Hugues Lemonnier

Shrimp farming in New Caledonia typically uses a flow-through system with water exchange rates as a tool to maintain optimum hydrological and biological parameters for the crop. Moreover, the effluent shows hydrobiological characteristics (minerals, phytoplankton biomass and organic matter) significantly higher than that of the receiving environment. Separate surveys were carried out in a bay (CH Bay) with a medium-size intensive farm (30 ha) (PO) and in a mangrove-lined creek (TE Creek) near a larger semi-intensive farm (133 ha) (SO). Net loads of nitrogen exported from the semi-intensive farm and the intensive farm amounted to 0.68 and 1.36 kg ha(-1)day(-1), respectively. At CH Bay, discharge effects were spatially limited and clearly restricted to periods of effluent release. The high residence time at site TE favoured the installation of a feedback system in which organic matter was not exported. Mineralization of organic matter led to the release of nutrients, which in turn, caused in an increased eutrophication of this ecosystem. The study of the pico- and nanophytoplankton assemblages showed (i) a shift in composition from picophytoplankton to nanophytoplankton from offshore towards the coast and (ii) a shift within the picophytoplankton with the disappearance of Prochlorococcus and the increase of picoeucaryotes towards the shoreline. These community changes may partially be related to a nitrogen enrichment of the environment by shrimp farm discharges. Thus, in view of the recent addition of the New Caledonian lagoon to the UNESCO World Heritage list, the data presented here could be a first approach to quantify farm discharges and evaluate their impact on the lagoon.


Marine Pollution Bulletin | 2012

Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling.

Franck Dumas; R. Le Gendre; Yoann Thomas; Serge Andréfouët

Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications.


Marine Pollution Bulletin | 2012

Bivalve larvae transport and connectivity within the Ahe atoll lagoon (Tuamotu Archipelago), with application to pearl oyster aquaculture management.

Yoann Thomas; R. Le Gendre; P. Garen; Franck Dumas; Serge Andréfouët

Patterns of bivalve larvae dispersal in the deep Ahe atoll lagoon was studied by using a numerical 3D transport model (MARS3D) coupled with a vertical swimming sub-model, forced mainly by tide and wind-induced currents. The simulations were validated against observations of larval dispersal monitored several days throughout the lagoon. Connectivity matrices describing larval exchanges inside the lagoon were inferred. Larvae displayed a significant dispersal capacity at the lagoon scale, especially with dominant eastern winds. With southeastern winds, larvae mostly remained in their origin sector. The total export rate of the larvae, toward the ocean through the pass and shallow lagoon borders, was independent of the wind conditions, with 1% of the total concentration exported per day. However, the tide-driven currents efficiently flushed larvae in sectors close to the pass. Connectivity matrices suggest that the south and west sectors were more suitable for spat collecting and that central sectors would be efficient sanctuaries if genitors were accumulated.


Marine Pollution Bulletin | 2012

Metazooplankton communities in the Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia): Spatiotemporal variations and trophic relationships

Marc Pagano; Pascual-Boi Sagarra; Gisèle Champalbert; Marc Bouvy; Christine Dupuy; Yoann Thomas; Loïc Charpy

Metazooplankton abundance, biomass (<80 μm, 200-500 μm and >500 μm) and community structure in the Ahe atoll were studied together with their relationships with environmental factors (temperature, salinity, wind) and trophic factors (phytoplankton, bacteria, heterotrophic nanoflagellates (HNF) and ciliates) during three periods in 2008-2009. Meroplankton, mainly bivalve and gastropod larvae, was dominant. Holoplankton was dominated by copepods, the main species being Oithona spp., Paracalanus parvus, Clausocalanus spp., Corycaeus spp., Acartia fossae and Undinula vulgaris. The results suggest a clear wind influence on the structure and horizontal distribution of the zooplankton communities. The metazooplankton appeared to be controlled mainly by food resources, suggesting a bottom-up control. The low nanophytoplankton biomass in contrast to the high abundance of picophytoplankton, HNF and nano-particle grazers (mainly Oithona spp., Paracalanus and bivalve larvae) highlighted the importance of the microbial loop in the food web.


Marine Pollution Bulletin | 2012

Multi-scale distribution and dynamics of bivalve larvae in a deep atoll lagoon (Ahe, French Polynesia)

Yoann Thomas; P. Garen; A. Bennett; M. Le Pennec; Jacques Clavier

Bivalve larvae and hydrographic parameters were sampled over a range of spatio-temporal scales in a deep atoll lagoon. Bivalve larvae abundances were very high throughout the year: 18,550 m(-3) in average. Larvae were (i) concentrated at mid-depth with nocturnal ascent and diurnal descent, (ii) heterogeneously dispersed at the lagoon scale, (iii) subject to day-to-day variation in abundance and (iv) transferred between different parts of the lagoon providing evidence of intra-lagoonal connectivity. The primacy of physical factors was seen on large spatial scale with the diluting effect of water renewal and transfers by hydrodynamics. On smaller spatial scale, the primacy of biological processes was recognised, with larval swimming activity leading to dial vertical migration correlated with food concentration. Variations in larval abundance were driven by bivalve reproductive activity correlated with meteorological conditions (i.e. windy periods). Finally, relationship between bivalve larvae patterns and pearl oyster (Pinctada margaritifera) settlement structuring is discussed.


The Journal of Experimental Biology | 2015

Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas

Arnaud Huvet; Jean-Philippe Béguel; Nathalia Pereira Cavaleiro; Yoann Thomas; Virgile Quillien; Pierre Boudry; Marianne Alunno-Bruscia; Caroline Fabioux

ABSTRACT Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: −50.7% and −59% mRNA A, and −71.9% and −70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (−22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (−53%) and absorption efficiency (−5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection. Summary: Disruption of amylase gene expression reduces absorption efficiency and constrains reproduction in oysters; the reduction in energy intake is insufficient to affect reproduction, suggesting that dsRNA causes disturbances that increase maintenance costs.


PLOS ONE | 2014

Larval Dispersal Modeling of Pearl Oyster Pinctada margaritifera following Realistic Environmental and Biological Forcing in Ahe Atoll Lagoon

Yoann Thomas; Franck Dumas; Serge Andréfouët

Studying the larval dispersal of bottom-dwelling species is necessary to understand their population dynamics and optimize their management. The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesias atoll lagoons. This aquaculture relies on spat collection, a process that can be optimized by understanding which factors influence larval dispersal. Here, we investigate the sensitivity of P. margaritifera larval dispersal kernel to both physical and biological factors in the lagoon of Ahe atoll. Specifically, using a validated 3D larval dispersal model, the variability of lagoon-scale connectivity is investigated against wind forcing, depth and location of larval release, destination location, vertical swimming behavior and pelagic larval duration (PLD) factors. The potential connectivity was spatially weighted according to both the natural and cultivated broodstock densities to provide a realistic view of connectivity. We found that the mean pattern of potential connectivity was driven by the southwest and northeast main barotropic circulation structures, with high retention levels in both. Destination locations, spawning sites and PLD were the main drivers of potential connectivity, explaining respectively 26%, 59% and 5% of the variance. Differences between potential and realistic connectivity showed the significant contribution of the pearl oyster broodstock location to its own dynamics. Realistic connectivity showed larger larval supply in the western destination locations, which are preferentially used by farmers for spat collection. In addition, larval supply in the same sectors was enhanced during summer wind conditions. These results provide new cues to understanding the dynamics of bottom-dwelling populations in atoll lagoons, and show how to take advantage of numerical models for pearl oyster management.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Reply to Lenz et al.: Quantifying the smallest microplastics is the challenge for a comprehensive view of their environmental impacts

Arnaud Huvet; Ika Paul-Pont; Caroline Fabioux; Christophe Lambert; Marc Suquet; Yoann Thomas; Johan Robbens; Philippe Soudant; Rossana Sussarellu

Studies on impacts of emerging contaminants are challenging, as is the case for studying the smallest sizes (<100 µm) of microplastics, mainly because there is no clear view of their actual concentration and characteristics in the natural environment (1). Major developments are required to establish standardized procedures for collecting, fractionating, characterizing, and quantifying polymer particles; probably, the best promising method is in a liquid matrix. In our recent article on impacts of microplastics in oysters (2), the microplastic size tested was of 2 and 6 µm, the size range preferentially ingested by filter feeders, which is …


Marine Pollution Bulletin | 2014

Amount and type of derelict gear from the declining black pearl oyster aquaculture in Ahe atoll lagoon, French Polynesia

Serge Andréfouët; Yoann Thomas; Cédrik Lo

Pearl oyster aquaculture is a major activity in French Polynesia atoll lagoons. After the economic decline that characterized the last decade, concerns recently rose about discarded installations and materials that supported aquaculture practices and by facilities abandoned after they had to close their activities. In May 2013, a first inventory of the type and amount of pearl farms derelict gear (PFDG) was achieved on 47 sites in Ahe lagoon. Surveys were conducted within and outside the boundaries of aquaculture concessions. Twenty types of PFDG littered the lagoon floor and the water column. The most impacted areas were near abandoned grafting houses with up to nine types of PFDG. Forty-five percent of the sites were impacted, including outside concessions. While management authorities are fully aware of the problem, this first assessment is a wake-up call to stimulate the cleaning of lagoons, enhance awareness among farmers, and identify potential ecological consequences on lagoon ecosystems.

Collaboration


Dive into the Yoann Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Andréfouët

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge