Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yogambha Ramaswamy is active.

Publication


Featured researches published by Yogambha Ramaswamy.


Biomaterials | 2010

The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering.

Hala Zreiqat; Yogambha Ramaswamy; Chengtie Wu; Angelo Paschalidis; Zufu Lu; Barbara James; Oliver Birke; Michelle M. McDonald; David G. Little; Colin R. Dunstan

In this study we developed novel scaffolds through the controlled substitution and incorporation of strontium and zinc into a calcium-silicon system to form Sr-Hardystonite (Sr-Ca(2)ZnSi(2)O(7), Sr-HT). The physical and biological properties of Sr-HT were compared to Hardystonite (Ca(2)ZnSi(2)O(7)) [HT]. We showed that Sr-HT scaffolds are porous with interconnected porous network (interconnectivity: 99%) and large pore size (300-500 microm) and an overall porosity of 78%, combined with a relatively high compressive strength (2.16+/-0.52 MPa). These properties are essential for enhancing bone ingrowth in load-bearing applications. Sr-HT ceramic scaffolds induced the attachment and differentiation of human bone derived cells (HOB), compared to that for the HT scaffolds. Sr-HT scaffolds enhanced expression of alkaline phosphatase, Runx-2, osteopontin, osteocalcin and bone sialoprotein. The in vivo osteoconductivity of the scaffolds was assessed at 3 and 6 weeks following implantation in tibial bone defects in rats. Histological staining revealed rapid new growth of bone into the pores of the 3D scaffolds with the Sr-HT and HT, relative to the beta-tricalcium phosphate (beta-TCP). In vivo, HT and Sr-HT produced distinct differences in the patterns of degradation of the materials, and their association with TRAP positive osteoclast-like cells with HT appearing more resistant compared to both Sr-HT and beta-TCP.


Acta Biomaterialia | 2010

Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering

Chengtie Wu; Yogambha Ramaswamy; Hala Zreiqat

Diopside (CaMgSi(2)O(6)) powders and dense ceramics have been shown to be bioactive biomaterials for bone repair. The aim of this study is to prepare bioactive diopside scaffolds and examine their physicochemical and biological properties. X-ray diffraction, scanning electron microscopy (SEM), micro-computerized tomography and energy-dispersive spectrometry were used to analyse the composition, microstructure, pore size and interconnectivity of the diopside scaffolds. The mechanical strength and stability as well as the degradation of the scaffolds were investigated by testing the compressive strength, modulus and silicon ions released, respectively. Results showed that highly porous diopside scaffolds with varying porosity and high interconnectivity of 97% were successfully prepared with improved compressive strength and mechanical stability, compared to the bioglass and CaSiO(3) scaffolds. The bioactivity of the diopside scaffolds was assessed using apatite-forming ability in simulated body fluids (SBF) and by their support for human osteoblastic-like cell (HOB) attachment, proliferation and differentiation using SEM, and MTS and alkaline phosphatase activity assays, respectively. Results showed that diopside scaffolds possessed apatite-forming ability in SBF and supported HOB attachment proliferation and differentiation. Bioactive diopside scaffolds were prepared with excellent pore/structure art, and improved mechanical strength and mechanical stability, suggesting their possible applications for bone tissue engineering regeneration.


Biomaterials | 2009

The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films

Chengtie Wu; Yogambha Ramaswamy; Yufang Zhu; Rongkun Zheng; Richard Appleyard; Andrew Howard; Hala Zreiqat

Poly(lactide-co-glycolide) (PLGA) has been widely used for bone tissue regeneration. However, it lacks hydrophilicity, bioactivity and sufficient mechanical strength and its acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Mesoporous bioactive glass (MBG) with highly ordered structure (pore size 2-50nm) possesses higher bioactivity than non-mesoporous bioactive glass (BG). The aim of this study is to investigate the effect of MBG on the mechanical strength, in vitro degradation, bioactivity, cellular response and drug release of PLGA films and optimize their physicochemical, biological and drug-delivery properties for bone tissue engineering application. The surface and inner microstructure, mechanical strength and surface hydrophilicity of MBG/PLGA and BG/PLGA films were tested. Results indicated that MBG or BG was uniformly dispersed in the PLGA films. The incorporation of MBG into PLGA films significantly improved their tensile strength, modulus and surface hydrophilicity. MBG/PLGA resulted in an enhanced mechanical strength, in vitro degradation (water absorbance, weight loss and ions release), apatite-formation ability and pH stability in simulated body fluids (SBF), compared to BG/PLGA. MBG/PLGA and BG/PLGA films enhanced human osteoblastic-like cells (HOBs) attachment, spreading and proliferation compared to PLGA. HOBs differentiation was significantly upregulated when cells were cultured on 30 MBG/PLGA for 14 days, compared to 30 BG/PLGA. MBG/PLGA enhanced the accumulative release of dexamethazone (DEX) at early stages (0-200h) compared to BG/PLGA, however, after 200h, DEX-release rates for MBG/PLGA was slower than that of BG/PLGA. The contents of MBG in PLGA films can control the amount of DEX released. Taken together, MBG/PLGA films possessed excellent physicochemical, biological and drug-release properties, indicating their potential application for bone tissue engineering by designing 3D scaffolds according to their corresponding compositions.


Acta Biomaterialia | 2008

Biological response of human bone cells to zinc-modified Ca-Si-based ceramics.

Yogambha Ramaswamy; Chengtie Wu; Hong Zhou; Hala Zreiqat

Calcium silicate (CaSiO(3)) ceramics have received considerable attention in recent years due to their excellent bioactivity and degradability. However, their poor chemical stability limits their biological applications. Hardystonite (Ca(2)ZnSi(2)O(7)) ceramics are Ca-Si-based materials developed by incorporating zinc into the Ca-Si system to improve their chemical stability. However, the biological responses of Ca(2)ZnSi(2)O(7) to bone cells are unknown. The objective of this study is to investigate and compare the in vitro responses of human osteoblast-like cells (HOBs) and osteoclasts when cultured on Ca(2)ZnSi(2)O(7) and CaSiO(3) ceramic disks. The ability of Ca(2)ZnSi(2)O(7) ceramics to support HOB attachment, cytoskeleton organization, proliferation and differentiation was assessed by scanning electron microscopy, confocal microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, alkaline phosphatase activity and quantitative real-time polymerase chain reaction. Our results show that Ca(2)ZnSi(2)O(7) supported HOB attachment with a well-organized cytoskeleton structure, and significantly increased cellular proliferation and differentiation compared to CaSiO(3). In addition, Ca(2)ZnSi(2)O(7) showed increased expression levels of osteoblast-related mRNAs (alkaline phosphatase, collagen type I, osteocalcin, receptor activator of NF(kappa)B ligand and osteoprotegerin) compared to CaSiO(3). Ca(2)ZnSi(2)O(7) ceramic supported the formation of mature and functional osteoclasts and formed resorption imprints. On CaSiO(3) ceramics, the cells failed to differentiate from the monocytes into osteoclasts. Taken together, these results indicate that Hardystonite ceramics are conducive to both types of bone cells, osteoblast-like cells and osteoclasts, suggesting their potential use for skeletal tissue regeneration and as coatings onto currently available orthopedic and dental implants.


Biomaterials | 2008

The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic

Yogambha Ramaswamy; Chengtie Wu; Annika van Hummel; Valery Combes; Georges E. Grau; Hala Zreiqat

In this study we have developed Ca(3)ZrSi(2)O(9) (Baghdadite) ceramics by incorporating Zirconium in Ca-Si system and determined their biological properties. Ca(3)ZrSi(2)O(9) ceramics possess apatite-formation ability in simulated body fluid, indicating their potential bioactivity. The response of human osteoblast like cells (HOB), osteoclast and endothelial cells when cultured on Ca(3)ZrSi(2)O(9) ceramics was investigated. Scanning electron microscopy and immunofluorescence studies demonstrated that this material supports HOB cell attachment with organized cytoskeleton structure. Compared to CaSiO(3), Ca(3)ZrSi(2)O(9) ceramics induced increased HOB proliferation and differentiation as shown by increased methyltetrazidium salt (MTS), alkaline phosphatase activity, and mRNA expression levels of bone-related genes (Collagen type I, alkaline phosphatase, Bone Sialoprotein, receptor activator of NF-kappaB ligand and osteoprotegerin). Ca(3)ZrSi(2)O(9) ceramics supported the fusion of monocytes to form functional osteoclasts with their characteristic features of f-actin ring structures and the expression of alpha(v)beta(3) integrin consistent with functional activity. Osteoclasts cultured on Ca(3)ZrSi(2)O(9) expressed increased levels of osteoclast-related genes; Cathepsin K, Carbonic Anhydrase II, Matrix metalloproteinase-9, receptor activator of NF-kappaB and Calcitonin Receptor, consistent with the formation of functional osteoclasts. In addition to HOB and osteoclasts, Ca(3)ZrSi(2)O(9) supported the attachment of endothelial cells, which expressed the endothelial cell markers; ZO-1 and VE-Cadherin. Results presented here indicate that Ca(3)ZrSi(2)O(9) ceramics have the potential for applications in bone tissue regeneration.


Acta Biomaterialia | 2008

Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method

Chengtie Wu; Yogambha Ramaswamy; David Gale; Wenrong Yang; Keqin Xiao; Liangchi Zhang; Yongbai Yin; Hala Zreiqat

Hydroxyapatite (HAp) is commonly used to coat titanium alloys (Ti-6Al-4V) for orthopedic implants. However, their poor adhesion strength and insufficient long-term stability limit their application. Novel sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study is to use the novel sphene ceramics as coatings for Ti-6Al-4V. The sol-gel method was used to produce the coatings and the thermal properties, phase composition, microstructure, thickness, surface roughness and adhesion strength of sphene coatings were analyzed by differential thermal analysis-thermal gravity (DTA-TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM) and scratch test, respectively. DTA analysis confirmed that the temperature of the sphene phase formation is 875 degrees C and XRD analysis indicated pure sphene coatings were obtained. A uniform structure of the sphene coating was found across the Ti-6Al-4V surface, with a thickness and surface roughness of the coating of about 0.5-1 microm and 0.38 microm, respectively. Sphene-coated Ti-6Al-4V possessed a significantly improved adhesion strength compared to that for HAp coating and their chemical stability was evaluated by testing the profile element distribution and the dissolution kinetics of calcium (Ca) ions after soaking the sphene-coated Ti-6Al-4V in Tris-HCl solution. Sphene coatings had a significantly improved chemical stability compared to the HAp coatings. A layer of apatite formed on the sphene-coated Ti-6Al-4V after they were soaked in simulated body fluids (SBF). Our results indicate that sol-gel coating of novel sphene onto Ti-6Al-4V possessed improved adhesion strength and chemical stability, compared to HAp-coated Ti-6Al-4V prepared under the same conditions, suggesting their potential application as coatings for orthopedic implants.


Journal of the Royal Society Interface | 2009

Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

Chengtie Wu; Yogambha Ramaswamy; Xuanyong Liu; Guocheng Wang; Hala Zreiqat

Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.


Journal of Biomedical Materials Research Part B | 2008

The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn–Ca–Si system ceramics

Chengtie Wu; Yogambha Ramaswamy; Jiang Chang; Joy Woods; Yiqing Chen; Hala Zreiqat

Ca-Si system ceramics, in particular CaSiO(3) ceramics, are regarded as potential bioactive bone repair/regeneration material. However, their high dissolution rate limits their biological applications. The aim of this study was to incorporate Zinc (Zn) into the Ca-Si system ceramics to produce part (at 10 and 20% Zn) or complete (at 50% Zn) new crystal phase (hardystonite: Ca(2)ZnSi(2)O(7)) with improved chemical stability and cellular activity. Zn-Ca-Si ceramics with four Zn contents (0, 10, 20, and 50%) were successfully prepared by sintering sol-gel-derived Zn-Ca-Si powder compacts. A new pure crystal phase Ca(2)ZnSi(2)O(7) was formed only when 50% Zn was added. The chemical stability of Zn-Ca-Si ceramics was evaluated by soaking in simulating body fluid (SBF), and the ion release from ceramics and the change in pH values of the SBF were measured. Their ability to form apatite in SBF was determined by analyzing the surface phase composition and morphology of the ceramics using X-ray diffraction and scanning electron microscopy (SEM). Results indicated that, with the increase of Zn contents, the chemical stability of ceramics increased while the apatite-formation ability decreased. The ability of Zn-Ca-Si ceramics to support attachment, proliferation, and differentiation of the human bone osteoblastic-like cells (HOB) was assessed using SEM, MTS, and alkaline phosphate activity assays, respectively. Zn-Ca-Si ceramics supported HOB attachment and their proliferation increased with the increase of Zn content. ALP activity of HOB on Zn-Ca-Si ceramics with 50% Zn (Ca(2)ZnSi(2)O(7)) was the highest among the levels obtained for the four ceramics tested. Taken together, Ca(2)ZnSi(2)O(7) ceramics possessed the best chemical stability and cellular bioactivity in Zn containing Ca-Si ceramics, indicating their potential application in skeletal tissue regeneration.


Arthritis Research & Therapy | 2010

S100A8 and S100A9 in experimental osteoarthritis

Hala Zreiqat; Daniele Belluoccio; Margaret M. Smith; Richard Wilson; Lynn Rowley; Katie Jones; Yogambha Ramaswamy; Thomas Vogl; J. Roth; John F. Bateman; Christopher B. Little

IntroductionThe objective was to evaluate the changes in S100A8 S100A9, and their complex (S100A8/S100A9) in cartilage during the onset of osteoarthritis (OA) as opposed to inflammatory arthritis.MethodsS100A8 and S100A9 protein localization were determined in antigen-induced inflammatory arthritis in mice, mouse femoral head cartilage explants stimulated with interleukin-1 (IL-1), and in surgically-induced OA in mice. Microarray expression profiling of all S100 proteins in cartilage was evaluated at different times after initiation of degradation in femoral head explant cultures stimulated with IL-1 and surgically-induced OA. The effect of S100A8, S100A9 or the complex on the expression of aggrecan (Acan), collagen II (Col2a1), disintegrin and metalloproteases with thrombospondin motifs (Adamts1, Adamts 4 &Adamts 5), matrix metalloproteases (Mmp1, Mmp3, Mmp13 &Mmp14) and tissue inhibitors of metalloproteinases (Timp1, Timp2 &Timp3), by primary adult ovine articular chondrocytes was determined using real time quantitative reverse transcription polymerase chain reaction (qRT-PCR).ResultsStimulation with IL-1 increased chondrocyte S100a8 and S100a9 mRNA and protein levels. There was increased chondrocyte mRNA expression of S100a8 and S100a9 in early but not late mouse OA. However, loss of the S100A8 staining in chondrocytes occurred as mouse OA progressed, in contrast to the positive reactivity for both S100A8 and S100A9 in chondrocytes in inflammatory arthritis in mice. Homodimeric S100A8 and S100A9, but not the heterodimeric complex, significantly upregulated chondrocyte Adamts1, Adamts4 and Adamts 5, Mmp1, Mmp3 and Mmp13 gene expression, while collagen II and aggrecan mRNAs were significantly decreased.ConclusionsChondrocyte derived S100A8 and S100A9 may have a sustained role in cartilage degradation in inflammatory arthritis. In contrast, while these proteins may have a role in initiating early cartilage degradation in OA by upregulating MMPs and aggrecanases, their reduced expression in late stages of OA suggests they do not have an ongoing role in cartilage degradation in this non-inflammatory arthropathy.


Expert Review of Medical Devices | 2009

Orthopedic coating materials: considerations and applications

Yogambha Ramaswamy; Chengtie Wu; Hala Zreiqat

The host response to titanium and its alloys is not always favorable, as a fibrous layer may form at the skeletal tissue–device interface, causing aseptic loosening. Therefore, a great deal of current orthopedic research is focused on developing implants with improved osseointegration properties in order to increase their clinical success. Promising new studies have been reported regarding coating the currently available implants with various coating materials and techniques so as to improve the long-term stability of implants. This article will discuss various coating materials developed, their advantages and disadvantages as coating materials and their biological performance.

Collaboration


Dive into the Yogambha Ramaswamy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengtie Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Little

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liangchi Zhang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Michelle M. McDonald

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge