Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yogesh Dwivedi is active.

Publication


Featured researches published by Yogesh Dwivedi.


Neuropsychiatric Disease and Treatment | 2009

Brain-derived neurotrophic factor: role in depression and suicide.

Yogesh Dwivedi

Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB) and its splice variant (TrkB.T1) have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.


Cns & Neurological Disorders-drug Targets | 2015

Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

Gianluca Serafini; Shawn Hayley; Maurizio Pompili; Yogesh Dwivedi; Goutam Brahmachari; Paolo Girardi; Mario Amore

Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review.


Translational Psychiatry | 2015

Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology

Yogesh Dwivedi; B Roy; G Lugli; H Rizavi; H Zhang; N R Smalheiser

Stress plays a major role in inducing depression, which may arise from interplay between complex cascades of molecular and cellular events that influence gene expression leading to altered connectivity and neural plasticity. In recent years, microRNAs (miRNAs) have carved their own niche owing to their innate ability to induce disease phenotype by regulating expression of a large number of genes in a cohesive and coordinated manner. In this study, we examined whether miRNAs and associated gene networks have a role in chronic corticosterone (CORT; 50u2009mgu2009u2009kg−1 × 21 days)-mediated depression in rats. Rats given chronic CORT showed key behavioral features that resembled depression phenotype. Expression analysis revealed differential regulation of 26 miRNAs (19 upregulated, 7 downregulated) in prefrontal cortex of CORT-treated rats. Interaction between altered miRNAs and target genes showed dense interconnected molecular network, in which multiple genes were predicated to be targeted by the same miRNA. A majority of altered miRNAs showed binding sites for glucocorticoid receptor element, suggesting that there may be a common regulatory mechanism of miRNA regulation by CORT. Functional clustering of predicated target genes yielded disorders such as developmental, inflammatory and psychological that could be relevant to depression. Prediction analysis of the two most prominently affected miRNAs miR-124 and miR-218 resulted into target genes that have been shown to be associated with depression and stress-related disorders. Altogether, our study suggests miRNA-mediated novel mechanism by which chronic CORT may be involved in depression pathophysiology.


Cellular and Molecular Neurobiology | 2014

The involvement of micrornas in major depression, suicidal behavior, and related disorders: A focus on miR-185 and miR-491-3p

Gianluca Serafini; Maurizio Pompili; Katelin F. Hansen; Karl Obrietan; Yogesh Dwivedi; Noam Shomron; Paolo Girardi

Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4xa0% of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2016

Pathogenetic and therapeutic applications of microRNAs in major depressive disorder.

Yogesh Dwivedi

As a class of noncoding RNAs, microRNAs (miRNAs) regulate gene expression by inhibiting translation of messenger RNAs. These miRNAs have been shown to play a critical role in higher brain functioning and actively participate in synaptic plasticity. Pre-clinical evidence demonstrates that expression of miRNAs is differentially altered during stress. On the other hand, depressed individuals show marked changes in miRNA expression in brain. MiRNAs are also target of antidepressants and electroconvulsive therapy. Moreover, these miRNAs are present in circulating blood and can be easily detected. Profiling of miRNAs in blood plasma/serum provides evidence that determination of miRNAs in blood can be used as possible diagnostic and therapeutic tool. In this review article, these aspects are critically reviewed and the role of miRNAs in possible etiopathogenesis and therapeutic implications in the context of major depressive disorder is discussed.


Frontiers in Psychiatry | 2014

Enoxacin Elevates MicroRNA Levels in Rat Frontal Cortex and Prevents Learned Helplessness.

Neil R. Smalheiser; Hui Zhang; Yogesh Dwivedi

Major depressive disorder (MDD) is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs) are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless (LH) behavior. Enoxacin, a fluoroquinolone used clinically as an anti-bacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25u2009mg/kg enoxacin for 1u2009week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting LH behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.


Journal of Psychiatric Research | 2017

DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation

Bhaskar Roy; Richard C. Shelton; Yogesh Dwivedi

Stress plays an important role in major depressive disorder (MDD) and is one of the state dependent factors in suicidal behavior. A dysfunctional hypothalamic-pituitary-adrenal axis is a common feature in this disorder. The involvement of environmental factors has added additional complexity to understanding depression or suicidal behavior. In this regard, epigenetic regulation has been considered a mechanistic interface between environmental stress stimuli and altered functioning of underlying gene network that may increase susceptibility to depression or suicidal behavior. The present study examined whether epigenetic modifications of stress related genes are associated with MDD and whether there are differences in these epigenetic marks between depressed individuals with and without serious suicidal ideation. Using MeDIP analysis in genomic DNA isolated from peripheral blood mononuclear cells (PBMC) of healthy controls (nxa0=xa020), MDD patients with (nxa0=xa014) or without serious suicidal ideation (nxa0=xa010), we studied methylation of the stress-associated genes, Brain Derived Neurotrophic Factor (BDNF), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), FK506 Binding Protein 5 (FKBP5), Corticotropin Releasing Hormone Binding Protein (CRHBP), and Corticotropin Releasing Hormone Receptor 1 (CRHR1). In addition, we determined their transcript levels in RNAs isolated from the same PBMC. We found that BDNF, FKBP5, CRHBP, and NR3C1 gene promoters were significantly hypermethylated in MDD patients with and without suicidal ideation. We also found concomitant reductions in expression of BDNF, FKBP5 transcript variants (1, 2 and 3), and NR3C1 genes in these patients, suggesting that promoter hypermethylation in these genes may functionally be associated with their observed downregulation in MDD patients. In a secondary analysis, methylation of these genes was compared between MDD patients with or without serious suicidal ideation and controls. The MDD with serious suicidal ideation were significantly different from controls while the MDD without were not, although MDD with or without suicidal ideation were not different from each other, likely owning to a relatively small sample size. Thus, our findings underline the importance of epigenetic modifications of stress-associated genes in depression and, possibly, suicidal behavior, which, in future, needs to be confirmed in a larger patient population.


Frontiers in Pharmacology | 2015

Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology.

Matthew A. Timberlake; Yogesh Dwivedi

The unfolded protein response (UPR) is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4, and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH) from resistance (non-learned helpless, NLH) to develop depression. Rats were exposed to inescapable shock on days 1 and 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC). Plasma corticosterone (CORT) levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the CORT level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6, and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends toward upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2017

The recent progress in animal models of depression

Qingzhong Wang; Matthew A. Timberlake; Kevin Prall; Yogesh Dwivedi

ABSTRACT Major depression disorder (MDD) is a debilitating mental illness with significant morbidity and mortality. Despite the growing number of studies that have emerged, the precise underlying mechanisms of MDD remain unknown. When studying MDD, tissue samples like peripheral blood or post‐mortem brain samples are used to elucidate underlying mechanisms. Unfortunately, there are many uncontrollable factors with such samples such as medication history, age, time after death before post‐mortem tissue was collected, age, sex, race, and living conditions. Although these factors are critical, they introduce confounding variables that can influence the outcome profoundly. In this regard, animal models provide a crucial approach to examine neural circuitry and molecular and cellular pathways in a controlled environment. Further, manipulations with pharmacological agents and gene editing are accepted methods of studying depression in animal models, which is impossible to employ in human patient studies. Here, we have reviewed the most widely used animal models of depression and delineated the salient features of each model in terms of behavioral and neurobiological outcomes. We have also illustrated the current challenges in using these models and have suggested strategies to delineate the underlying mechanism associated with vulnerability or resilience to developing depression. HIGHLIGHTSAvailability of current animal models of depressionCritical evaluation of behavioral paradigms being used to phenotype depression in animals.Availability genetic models of depression and their usefulnessDiscuss current challenges and future studies to focus on the underlying mechanism on depression and resilience


World Journal of Biological Psychiatry | 2017

Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder.

Qingzhong Wang; Yogesh Dwivedi

Abstract Objectives: Recent evidences suggest that mitochondrial dysfunction maybe involved in the pathophysiology of major depressive disorder (MDD); however, the role of mitochondrial genes in this disorder has not been studied systematically. In the present study, we profiled expression of mitochondrial genes in dorsolateral prefrontal cortex (dlPFC) of MDD and non-psychiatric control subjects. Methods: Human mitochondrial RT2 profile PCR array plates were used to examine differentially expressed genes in dlPFC of 11 MDD and 11 control subjects. Differentially expressed genes were validated independently by qRT-PCR. Biological relevance of differentially expressed genes was analysed by gene ontology (GO) and ingenuity pathways analysis (IPA). Results: We found that 16 genes were differentially expressed in the MDD group compared with control group. Among them, three genes were downregulated and 13 genes upregulated. None of these genes were affected by confounding variables, such as age, post-mortem interval, brain pH, and antidepressant toxicology. Seven differentially expressed genes were successfully validated in MDD subjects. GO and IPA analyses identified several new regulatory networks associated with mitochondrial dysfunctions in MDD. Conclusions: Our findings suggest abnormal mitochondrial systems in the brain of MDD subjects which could be involved in the etiopathogenesis of this disorder.

Collaboration


Dive into the Yogesh Dwivedi's collaboration.

Top Co-Authors

Avatar

Bhaskar Roy

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Qingzhong Wang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Girardi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Birgit Ludwig

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Timberlake

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Pompili

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge