Yogita Patil-Sen
University of Central Lancashire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yogita Patil-Sen.
Colloids and Surfaces B: Biointerfaces | 2015
Mukta Kulkarni; Yogita Patil-Sen; Ita Junkar; Chandrashekhar V. Kulkarni; Martina Lorenzetti; Aleš Iglič
Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and proliferation, thereby reducing post-operative complications with increased lifespan of biomedical implants. The novelty of our TiO2 nanostructures lies mainly in the high level control over their morphology and roughness by mere compositional change and optimisation of the experimental parameters. The present work focuses on the wetting behaviour of various nanostructured titanium surfaces towards water. Kinetics of contact area of water droplet on macroscopically flat, nanoporous and nanotubular titanium surface topologies was monitored under similar evaporation conditions. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation. This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface-water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces.
International Journal of Pharmaceutics | 2015
Chandrashekhar V. Kulkarni; Zeinab Moinuddin; Yogita Patil-Sen; Rowan Littlefield; Mitesh Hood
We report a hybrid system, fabricated from nanostructured lipid particles and polysaccharide based hydrogel, for sustained release applications. Lipid particles were prepared by kinetically stabilizing self-assembled lipid nanostructures whereas the hydrogel was obtained by dissolving kappa-carrageenan (KC) in water. The drug was incorporated in native as well as lipid particles loaded hydrogels, which upon dehydration formed thin films. The kinetics of drug release from these films was monitored by UV-vis spectroscopy while the films were characterized by Fourier transform infra-red (FTIR) spectroscopy and small angle X-ray scattering techniques. Pre-encapsulation of a drug into lipid particles is demonstrably advantageous in certain ways; for instance, direct interactions between KC and drug molecules are prohibited due to the mediation of hydrophobic forces generated by lipid tails. Rapid diffusion of small drug molecules from porous hydrogel network is interrupted by their encapsulation into rather large sized lipid particles. The drug release from the lipid-hydrogel matrix was sustained by an order of magnitude timescale with respect to the release from native hydrogel films. These studies form a strong platform for the development of combined carrier systems for controlled therapeutic applications.
ChemBioChem | 2015
Sara Fahs; Yogita Patil-Sen; Timothy J. Snape
Targeting important protein–protein interactions involved in carcinogenesis or targeting the cell membrane of a cancer cell directly are just two of the ways in which foldamers (oligomeric molecules that fold into distinct shapes in solution) hold considerable potential in the treatment of cancer. From mimicking the local topography of the helical compound of interest by using covalently constrained foldamers to mimicking the topography of the natural helix such that the positions of key functional motifs are in an identical spatial orientation to match those presented by the original α‐helix, synthetic foldamers have been used to mimic the natural foldamers that interact with proteins or the cell membrane. These targeted approaches have become established over a timeframe of more than a decade, and they continue to be included in the assortment of cancer targets being studied and the arsenal of chemotherapy compounds in development. These approaches are reviewed herein.
Bioorganic & Medicinal Chemistry Letters | 2014
Sara Fahs; Farjana B. Rowther; Sarah R. Dennison; Yogita Patil-Sen; Tracy Warr; Timothy J. Snape
The synthesis and biological evaluation of a novel pyridinium salt is reported. Initial membrane interaction with isolated phospholipid monolayers was obtained with the pyridinium salt, and two neutral analogues for comparison, and the anticancer effects of the best compound established using a cytotoxicity screening assay against glioma cells using both an established cell line and three short-term cell cultures-one of which has been largely resistant to all chemotherapeutic drugs tested to date. The results indicate that the pyridinium salt exhibits potent anticancer activity (EC50s=9.8-312.5 μM) on all cell types, including the resistant one, for a continuous treatment of 72 h. Microscopic examination of the treated cells using a trypan blue exclusion assay showed membrane lysis had occurred. Therefore, this letter highlights the potential for a new class of pyridinium salt to be developed as a much needed alternative treatment for glioma chemotherapy.
Bioorganic & Medicinal Chemistry | 2016
Yogita Patil-Sen; Sarah R. Dennison; Timothy J. Snape
By varying the molecular charge, shape and amphiphilicity of a series of conformationally distinct diarylureas it is possible to control the levels of phospholipid membrane lysis using membranes composed of bacterial lipid extracts. From the data obtained, it appears as though the lysis activity observed is not due to charge, conformation or amphiphilicity in isolation, but that surface aggregation, H-bonding and other factors may also play a part. The work provides evidence that this class of foldamer possesses potential for optimisation into new antibacterial agents.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Ashwin Narain; Simran Asawa; Vikesh Chhabria; Yogita Patil-Sen
Cell membrane coated nanoparticles (NPs) is a biomimetic strategy developed to engineer therapeutic devices consisting of a NP core coated with membrane derived from natural cells such as erythrocytes, white blood cells, cancer cells, stem cells, platelets or bacterial cells. These biomimetic NPs have gained a lot of attention recently owing to their cell surface mimetic features and tailored nanomaterial characteristics. They have shown strong potential in diagnostic and therapeutic applications including those in drug delivery, immune modulation, vaccination and detoxification. Herein we review the various types of cell membrane coated NPs reported in the literature and the unique strengths of these biomimetic NPs with an emphasis on how these bioinspired camouflage strategies have led to improved therapeutic efficacy. We also highlight the recent progress made by each platform in advancing healthcare and precis the major challenges associated with these NPs.
Archive | 2018
A. Majid; Waqar Ahmed; Yogita Patil-Sen; Tapas Sen
The idea of using magnetic nanomaterials in biomedical applications has been studied since last decades. Magnetic nanomaterials have been found as a promising candidate in biological applications. This chapter presented the diverse approach to engineer the nanoparticles for targeted applications. Superparamagnetic iron oxide nanoparticle (SPION) cores of 10–25 nm were synthesised using co-precipitation method iron (II) and iron (III) salts in alkaline medium. The superparamagnetic behaviour is an ideal solid support for the hyperthermia ablation and magnetic field-triggered stimuli for drug release. These cores were further coated with mesoporous silica rendering them versatile materials, which can enhance the stability, drug-loading capacity and its release in controllable manner. Moreover, their promising applications as magnetic field-triggered hyperthermia ablation and magnetic field-triggered controlled-release drug delivery combining both thermos-chemotherapy system.
Journal of Visualized Experiments | 2016
Yogita Patil-Sen; Amin Sadeghpour; Michael Rappolt; Chandrashekhar V. Kulkarni
Nanoscale | 2015
Nicholas Gaunt; Yogita Patil-Sen; Matthew J. Baker; Chandrashekhar V. Kulkarni
Materials Today: Proceedings | 2017
Abdul Majid; Yogita Patil-Sen; Waqar Ahmed; Tapas Sen