Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yohannes Haile-Selassie is active.

Publication


Featured researches published by Yohannes Haile-Selassie.


Science | 2009

Ardipithecus ramidus and the Paleobiology of Early Hominids

Tim D. White; Berhane Asfaw; Yonas Beyene; Yohannes Haile-Selassie; C. Owen Lovejoy; Gen Suwa; Giday WoldeGabriel

Hominid fossils predating the emergence of Australopithecus have been sparse and fragmentary. The evolution of our lineage after the last common ancestor we shared with chimpanzees has therefore remained unclear. Ardipithecus ramidus, recovered in ecologically and temporally resolved contexts in Ethiopia’s Afar Rift, now illuminates earlier hominid paleobiology and aspects of extant African ape evolution. More than 110 specimens recovered from 4.4-million-year-old sediments include a partial skeleton with much of the skull, hands, feet, limbs, and pelvis. This hominid combined arboreal palmigrade clambering and careful climbing with a form of terrestrial bipedality more primitive than that of Australopithecus. Ar. ramidus had a reduced canine/premolar complex and a little-derived cranial morphology and consumed a predominantly C3 plant–based diet (plants using the C3 photosynthetic pathway). Its ecological habitat appears to have been largely woodland-focused. Ar. ramidus lacks any characters typical of suspension, vertical climbing, or knuckle-walking. Ar. ramidus indicates that despite the genetic similarities of living humans and chimpanzees, the ancestor we last shared probably differed substantially from any extant African ape. Hominids and extant African apes have each become highly specialized through very different evolutionary pathways. This evidence also illuminates the origins of orthogrady, bipedality, ecology, diet, and social behavior in earliest Hominidae and helps to define the basal hominid adaptation, thereby accentuating the derived nature of Australopithecus.


Nature | 2001

Late Miocene hominids from the Middle Awash, Ethiopia

Yohannes Haile-Selassie

Molecular studies suggest that the lineages leading to humans and chimpanzees diverged approximately 6.5–5.5 million years (Myr) ago, in the Late Miocene. Hominid fossils from this interval, however, are fragmentary and of uncertain phylogenetic status, age, or both. Here I report new hominid specimens from the Middle Awash area of Ethiopia that date to 5.2–5.8 Myr and are associated with a wooded palaeoenvironment. These Late Miocene fossils are assigned to the hominid genus Ardipithecus and represent the earliest definitive evidence of the hominid clade. Derived dental characters are shared exclusively with all younger hominids. This indicates that the fossils probably represent a hominid taxon that postdated the divergence of lineages leading to modern chimpanzees and humans. However, the persistence of primitive dental and postcranial characters in these new fossils indicates that Ardipithecus was phylogenetically close to the common ancestor of chimpanzees and humans. These new findings raise additional questions about the claimed hominid status of Orrorin tugenensis, recently described from Kenya and dated to ∼6 Myr.


Nature | 2006

Asa issie, aramis and the origin of Australopithecus

Tim D. White; Giday WoldeGabriel; Berhane Asfaw; Stan Ambrose; Yonas Beyene; Raymond L. Bernor; Jean-Renaud Boisserie; Brian S. Currie; Henry Gilbert; Yohannes Haile-Selassie; William K. Hart; Leslea J. Hlusko; F. Clark Howell; Reiko T. Kono; Thomas Lehmann; Antoine Louchart; C. Owen Lovejoy; Paul R. Renne; Haruo Saegusa; Elisabeth S. Vrba; Hank Wesselman; Gen Suwa

The origin of Australopithecus, the genus widely interpreted as ancestral to Homo, is a central problem in human evolutionary studies. Australopithecus species differ markedly from extant African apes and candidate ancestral hominids such as Ardipithecus, Orrorin and Sahelanthropus. The earliest described Australopithecus species is Au. anamensis, the probable chronospecies ancestor of Au. afarensis. Here we describe newly discovered fossils from the Middle Awash study area that extend the known Au. anamensis range into northeastern Ethiopia. The new fossils are from chronometrically controlled stratigraphic sequences and date to about 4.1–4.2 million years ago. They include diagnostic craniodental remains, the largest hominid canine yet recovered, and the earliest Australopithecus femur. These new fossils are sampled from a woodland context. Temporal and anatomical intermediacy between Ar. ramidus and Au. afarensis suggest a relatively rapid shift from Ardipithecus to Australopithecus in this region of Africa, involving either replacement or accelerated phyletic evolution.


Science | 2009

Macrovertebrate paleontology and the pliocene habitat of ardipithecus ramidus

Tim D. White; Stanley H. Ambrose; Gen Suwa; Denise F. Su; David DeGusta; Raymond L. Bernor; Jean-Renaud Boisserie; Michel Brunet; Eric Delson; Stephen R. Frost; Nuria García; Ioannis X. Giaourtsakis; Yohannes Haile-Selassie; F. Clark Howell; Thomas Lehmann; Andossa Likius; Cesur Pehlevan; Haruo Saegusa; Gina M. Semprebon; Mark F. Teaford; Elisabeth S. Vrba

A diverse assemblage of large mammals is spatially and stratigraphically associated with Ardipithecus ramidus at Aramis. The most common species are tragelaphine antelope and colobine monkeys. Analyses of their postcranial remains situate them in a closed habitat. Assessment of dental mesowear, microwear, and stable isotopes from these and a wider range of abundant associated larger mammals indicates that the local habitat at Aramis was predominantly woodland. The Ar. ramidus enamel isotope values indicate a minimal C4 vegetation component in its diet (plants using the C4 photosynthetic pathway), which is consistent with predominantly forest/woodland feeding. Although the Early Pliocene Afar included a range of environments, and the local environment at Aramis and its vicinity ranged from forests to wooded grasslands, the integration of available physical and biological evidence establishes Ar. ramidus as a denizen of the closed habitats along this continuum.


Nature | 2012

A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations

Yohannes Haile-Selassie; Beverly Z. Saylor; Alan L. Deino; Naomi E. Levin; Mulugeta Alene; Bruce Latimer

A newly discovered partial hominin foot skeleton from eastern Africa indicates the presence of more than one hominin locomotor adaptation at the beginning of the Late Pliocene epoch. Here we show that new pedal elements, dated to about 3.4 million years ago, belong to a species that does not match the contemporaneous Australopithecus afarensis in its morphology and inferred locomotor adaptations, but instead are more similar to the earlier Ardipithecus ramidus in possessing an opposable great toe. This not only indicates the presence of more than one hominin species at the beginning of the Late Pliocene of eastern Africa, but also indicates the persistence of a species with Ar. ramidus-like locomotor adaptation into the Late Pliocene.


Nature | 2015

New species from Ethiopia further expands Middle Pliocene hominin diversity

Yohannes Haile-Selassie; Luis Gibert; Stephanie M. Melillo; Timothy M. Ryan; Mulugeta Alene; Alan L. Deino; Naomi E. Levin; Gary R. Scott; Beverly Z. Saylor

Middle Pliocene hominin species diversity has been a subject of debate over the past two decades, particularly after the naming of Australopithecus bahrelghazali and Kenyanthropus platyops in addition to the well-known species Australopithecus afarensis. Further analyses continue to support the proposal that several hominin species co-existed during this time period. Here we recognize a new hominin species (Australopithecus deyiremeda sp. nov.) from 3.3–3.5-million-year-old deposits in the Woranso–Mille study area, central Afar, Ethiopia. The new species from Woranso–Mille shows that there were at least two contemporaneous hominin species living in the Afar region of Ethiopia between 3.3 and 3.5 million years ago, and further confirms early hominin taxonomic diversity in eastern Africa during the Middle Pliocene epoch. The morphology of Au. deyiremeda also reinforces concerns related to dentognathic (that is, jaws and teeth) homoplasy in Plio–Pleistocene hominins, and shows that some dentognathic features traditionally associated with Paranthropus and Homo appeared in the fossil record earlier than previously thought.


Journal of Human Evolution | 2010

40Ar/39Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia

Alan L. Deino; Gary R. Scott; Beverly Z. Saylor; Mulugeta Alene; Joshua D. Angelini; Yohannes Haile-Selassie

(40)Ar/(39)Ar dating of tuffs and mafic lavas, tephra geochemistry, and paleomagnetic reversal stratigraphy have been used to establish the chronostratigraphy of the Pliocene hominid-bearing fossiliferous succession at Woranso-Mille, a paleontological study area in the western part of the central Afar region of Ethiopia. The succession in the northwestern part of the study area ranges in (40)Ar/(39)Ar age from 3.82-3.570 Ma, encompassed by paleomagnetic subchron C2Ar (4.187-3.596 Ma). One of the major tuff units, locally named the Kilaytoli tuff, is correlative on the basis of age and geochemistry to the Lokochot Tuff of the Turkana Basin. A hominid partial skeleton (KSD-VP-1) was found in strata whose precise stratigraphic position and age is still under investigation, but is believed to correspond to the later part of this interval. Woranso-Mille fills a significant gap in the fossil record of northeastern Africa at the time of the lower to middle Pliocene transition, when many extant species lineages of African fauna were established.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene

Naomi E. Levin; Yohannes Haile-Selassie; Stephen R. Frost; Beverly Z. Saylor

Significance Dietary change among hominins is a critical aspect of human evolution. Here we use carbon isotope data from fossil teeth of hominins, monkeys, and other mammals from Ethiopia to document C4 food consumption by both hominins and the baboon, Theropithecus oswaldi, during the early Pliocene. The expansion of hominin diet and the appearance of the Theropithecus oswaldi lineage as early as 3.76 Ma mark a major ecological change within African primate communities. The ability to eat a range of C3 and C4 foods indicates that early Pliocene hominins were likely generalists who could thrive in different and perhaps varying environments. The incorporation of C4 resources into hominin diet signifies increased dietary breadth within hominins and divergence from the dietary patterns of other great apes. Morphological evidence indicates that hominin diet became increasingly diverse by 4.2 million years ago but may not have included large proportions of C4 foods until 800 thousand years later, given the available isotopic evidence. Here we use carbon isotope data from early to mid Pliocene hominin and cercopithecid fossils from Woranso-Mille (central Afar, Ethiopia) to constrain the timing of this dietary change and its ecological context. We show that both hominins and some papionins expanded their diets to include C4 resources as early as 3.76 Ma. Among hominins, this dietary expansion postdates the major dentognathic morphological changes that distinguish Australopithecus from Ardipithecus, but it occurs amid a continuum of adaptations to diets of tougher, harder foods and to committed terrestrial bipedality. In contrast, carbon isotope data from cercopithecids indicate that C4-dominated diets of the earliest members of the Theropithecus oswaldi lineage preceded the dental specialization for grazing but occurred after they were fully terrestrial. The combined data indicate that the inclusion of C4 foods in hominin diet occurred as part of broader ecological changes in African primate communities.


Journal of Human Evolution | 2014

Early Pliocene Cercopithecidae from Woranso-Mille (Central Afar, Ethiopia) and the origins of the Theropithecus oswaldi lineage.

Stephen R. Frost; Nina G. Jablonski; Yohannes Haile-Selassie

A large series of fossil cercopithecids has been recovered from the hominid-bearing Woranso-Mille site, Afar State, northeastern Ethiopia. Here we report the taxonomy of those specimens from the Am-Ado, Aralee Issie, Korsi Dora, Makah Mera, and Mesgid Dora collection areas, which are all roughly contemporaneous and dated to between 3.6 and 3.8 million years ago. This series includes a minimum of two cercopithecine and three colobine species. Theropithecus oswaldi cf. darti is by far the most common species in the assemblage, making up over 90% of identifiable cercopithecid specimens. There is also at least one other species of papionin, which cannot be currently assigned to a genus. The colobines are here allocated to Cercopithecoides cf. meaveae and two other species, one small and one large, that cannot be currently assigned to genus. The T. oswaldi cf. darti series from Woranso-Mille is both the earliest and largest identified to date. It documents the earliest occurrence of the T. oswaldi lineage and strongly suggests that parallel evolution of molar morphology has occurred within the genus between T. oswaldi and Theropithecus brumpti. Given the dominance of monkeys at Woranso-Mille, and the preponderance of Theropithecus among cercopithecids, T. o. cf. darti is likely to be the most common mammal present at the 3.6-3.8 million-years-old localities of the Woranso-Mille study area. Some explanations for this unusual occurrence are explored, and implications for the paleoenvironment at Woranso-Mille are also discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2016

The Pliocene hominin diversity conundrum: Do more fossils mean less clarity?

Yohannes Haile-Selassie; Stephanie M. Melillo; Denise F. Su

Recent discoveries of multiple middle Pliocene hominins have raised the possibility that early hominins were as speciose as later hominins. However, debates continue to arise around the validity of most of these new taxa, largely based on poor preservation of holotype specimens, small sample size, or the lack of evidence for ecological diversity. A closer look at the currently available fossil evidence from Ethiopia, Kenya, and Chad indicate that Australopithecus afarensis was not the only hominin species during the middle Pliocene, and that there were other species clearly distinguishable from it by their locomotor adaptation and diet. Although there is no doubt that the presence of multiple species during the middle Pliocene opens new windows into our evolutionary past, it also complicates our understanding of early hominin taxonomy and phylogenetic relationships.

Collaboration


Dive into the Yohannes Haile-Selassie's collaboration.

Top Co-Authors

Avatar

Beverly Z. Saylor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alan L. Deino

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar

Tim D. White

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giday WoldeGabriel

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi E. Levin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Bruce Latimer

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge