Yohei Nomura
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yohei Nomura.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Thorsten M. Leucker; Yohei Nomura; Jae Hyung Kim; Anil Bhatta; Victor Wang; Andrea Wecker; Sandeep S Jandu; Lakshmi Santhanam; Dan E. Berkowitz; Lewis H. Romer; Deepesh Pandey
Endothelial cystathionine γ-lyase (CSEγ) contributes to cardiovascular homeostasis, mainly through production of H2S. However, the molecular mechanisms that control CSEγ gene expression in the endothelium during cardiovascular diseases are unclear. The aim of the current study is to determine the role of specific histone deacetylases (HDACs) in the regulation of endothelial CSEγ. Reduced CSEγ mRNA expression and protein abundance were observed in human aortic endothelial cells (HAEC) exposed to oxidized LDL (OxLDL) and in aortas from atherogenic apolipoprotein E knockout (ApoE-/-) mice fed a high-fat diet compared with controls. Intact murine aortic rings exposed to OxLDL (50 μg/ml) for 24 h exhibited impaired endothelium-dependent vasorelaxation that was blocked by CSEγ overexpression or the H2S donor NaHS. CSEγ expression was upregulated by pan-HDAC inhibitors and by class II-specific HDAC inhibitors, but not by other class-specific inhibitors. The HDAC6 selective inhibitor tubacin and HDAC6-specific siRNA increased CSEγ expression and blocked OxLDL-mediated reductions in endothelial CSEγ expression and CSEγ promoter activity, indicating that HDAC6 is a specific regulator of CSEγ expression. Consistent with this finding, HDAC6 mRNA, protein expression, and activity were upregulated in OxLDL-exposed HAEC, but not in human aortic smooth muscle cells. HDAC6 protein levels in aortas from high-fat diet-fed ApoE-/- mice were comparable to those in controls, whereas HDAC6 activity was robustly upregulated. Together, our findings indicate that HDAC6 is upregulated by atherogenic stimuli via posttranslational modifications and is a critical regulator of CSEγ expression in vascular endothelium. Inhibition of HDAC6 activity may improve endothelial function and prevent or reverse the development of atherosclerosis.NEW & NOTEWORTHY Oxidative injury to endothelial cells by oxidized LDL reduced cystathionine γ-lyase (CSEγ) expression and H2S production, leading to endothelial dysfunction, which was prevented by histone deacetylase 6 (HDAC6) inhibition. Our data suggest HDAC6 as a novel therapeutic target to prevent the development of atherosclerosis.
PLOS ONE | 2017
Daijiro Hori; Brittany Dunkerly‐Eyring; Yohei Nomura; Debjit Biswas; Jochen Steppan; Jorge Henao-Mejia; Hideo Adachi; Lakshmi Santhanam; Dan E. Berkowitz; Charles Steenbergen; Richard A. Flavell; Samarjit Das
Background Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening. Methods and results qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT) were followed weekly for pulse wave velocity (PWV) and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced) in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L) prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice. Conclusions Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway.
The Journal of Thoracic and Cardiovascular Surgery | 2017
Daijiro Hori; Yohei Nomura; Masahiro Ono; Brijen Joshi; Kaushik Mandal; Duke E. Cameron; Masha Kocherginsky; Charles W. Hogue
Objectives: We sought to define the lower and upper limits of cerebral blood flow autoregulation and the optimal blood pressure during cardiopulmonary bypass. We further sought to identify variables predictive of these autoregulation end points. Methods: Cerebral autoregulation was monitored continuously with transcranial Doppler in 614 patients during cardiopulmonary bypass enrolled in 3 investigations. A moving Pearsons correlation coefficient was calculated between cerebral blood flow velocity and mean arterial pressure to generate the variable mean velocity index. Optimal mean arterial pressure was defined as the mean arterial pressure with the lowest mean velocity index indicating the best autoregulation. The lower and upper limits of cerebral blood flow autoregulation were defined as the mean arterial pressure at which mean velocity index was increasingly pressure passive (ie, mean velocity index ≥0.4) with declining or increasing blood pressure, respectively. Results: The mean (± standard deviation) lower and upper limits of cerebral blood flow autoregulation, and optimal mean arterial pressure were 65 ± 12 mm Hg, 84 ± 11 mm Hg, and 78 ± 11 mm Hg, respectively, after adjusting for study enrollment. In 17% of patients, though, the lower limit of cerebral autoregulation was above this optimal mean arterial pressure, whereas in 29% of patients the upper limit of autoregulation was below the population optimal mean arterial pressure. Variables associated with optimal mean arterial pressure based on multivariate regression analysis were nonwhite race (increased 2.7 mm Hg; P = .034), diuretics use (decreased 1.9 mm Hg; P = .049), prior carotid endarterectomy (decreased 5.5 mm Hg; P = .019), and duration of cardiopulmonary bypass (decreased 1.28 per 60 minutes of cardiopulmonary bypass). The product of the duration and magnitude that mean arterial pressure during cardiopulmonary bypass was below the lower limit of cerebral autoregulation was associated with the risk for stroke (P = .02). Conclusions: Real‐time monitoring of autoregulation may improve individualizing mean arterial pressure during cardiopulmonary bypass and improving patient outcomes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2018
Deepesh Pandey; Yohei Nomura; Max C. Rossberg; Daijiro Hori; Anil Bhatta; Gizem Keceli; Thorsten M. Leucker; Lakshmi Santhanam; Larissa A. Shimoda; Dan E. Berkowitz; Lewis H. Romer
Objective— KLF15 (Kruppel-like factor 15) has recently been shown to suppress activation of proinflammatory processes that contribute to atherogenesis in vascular smooth muscle, however, the role of KLF15 in vascular endothelial function is unknown. Arginase mediates inflammatory vasculopathy and vascular injury in pulmonary hypertension. Here, we tested the hypothesis that KLF15 is a critical regulator of hypoxia-induced Arg2 (arginase 2) transcription in human pulmonary microvascular endothelial cells (HPMEC). Approach and Results— Quiescent HPMEC express ample amounts of full-length KLF15. HPMECs exposed to 24 hours of hypoxia exhibited a marked decrease in KLF15 protein levels and a reciprocal increase in Arg2 protein and mRNA. Chromatin immunoprecipitation indicated direct binding of KLF15 to the Arg2 promoter, which was relieved with HPMEC exposure to hypoxia. Furthermore, overexpression of KLF15 in HPMEC reversed hypoxia-induced augmentation of Arg2 abundance and arginase activity and rescued nitric oxide (NO) production. Ectopic KLF15 also reversed hypoxia-induced endothelium-mediated vasodilatation in isolated rat pulmonary artery rings. Mechanisms by which hypoxia regulates KLF15 abundance, stability, and compartmentalization to the nucleus in HPMEC were then investigated. Hypoxia triggered deSUMOylation of KLF15 by SENP1 (sentrin-specific protease 1), and translocation of KLF15 from nucleus to cytoplasm. Conclusions— KLF15 is a critical regulator of pulmonary endothelial homeostasis via repression of endothelial Arg2 expression. KLF15 abundance and nuclear compartmentalization are regulated by SUMOylation/deSUMOylation—a hypoxia-sensitive process that is controlled by SENP1. Strategies including overexpression of KLF15 or inhibition of SENP1 may represent novel therapeutic targets for pulmonary hypertension.
Anesthesiology | 2018
Charles H. Brown; Julia Probert; Ryan Healy; Michelle Parish; Yohei Nomura; Atsushi Yamaguchi; Jing Tian; Kenton J. Zehr; Kaushik Mandal; Vidyulata Kamath; Karin J. Neufeld; Charles W. Hogue
What We Already Know about This TopicCardiac surgery is associated with cognitive decline and postoperative deliriumThe relationship between postoperative delirium and cognitive decline after cardiac surgery is unclear What This Article Tells Us That Is NewThe development of postoperative delirium is associated with a greater degree of cognitive decline 1 month after cardiac surgeryThe development of postoperative delirium is not a predictor of cognitive decline 1 yr after cardiac surgery Background: Delirium is common after cardiac surgery and has been associated with morbidity, mortality, and cognitive decline. However, there are conflicting reports on the magnitude, trajectory, and domains of cognitive change that might be affected. The authors hypothesized that patients with delirium would experience greater cognitive decline at 1 month and 1 yr after cardiac surgery compared to those without delirium. Methods: Patients who underwent coronary artery bypass and/or valve surgery with cardiopulmonary bypass were eligible for this cohort study. Delirium was assessed with the Confusion Assessment Method. A neuropsychologic battery was administered before surgery, at 1 month, and at 1 yr later. Linear regression was used to examine the association between delirium and change in composite cognitive Z score from baseline to 1 month (primary outcome). Secondary outcomes were domain-specific changes at 1 month and composite and domain-specific changes at 1 yr. Results: The incidence of delirium in 142 patients was 53.5%. Patients with delirium had greater decline in composite cognitive Z score at 1 month (greater decline by −0.29; 95% CI, −0.54 to −0.05; P = 0.020) and in the domains of visuoconstruction and processing speed. From baseline to 1 yr, there was no difference between delirious and nondelirious patients with respect to change in composite cognitive Z score, although greater decline in processing speed persisted among the delirious patients. Conclusions: Patients who developed delirium had greater decline in a composite measure of cognition and in visuoconstruction and processing speed domains at 1 month. The differences in cognitive change by delirium were not significant at 1 yr, with the exception of processing speed.
Anesthesia & Analgesia | 2017
Aaron J. Chang; Yohei Nomura; Viachaslau Barodka; Daijiro Hori; Jonathan Trent Magruder; Nevin M. Katz; Dan E. Berkowitz; Charles W. Hogue
Acute kidney injury after cardiac surgery is associated with increased morbidity and mortality. Methods for measuring urine output in real time may better ensure renal perfusion perioperatively in contrast to the current standard of care where urine output is visually estimated after empiric epochs of time. In this study, we describe an accurate method for monitoring urine output continuously during cardiopulmonary bypass. This may provide a means for setting patient-specific targets for blood pressure and cardiopulmonary bypass flow as a potential strategy to reduce the risk for acute kidney injury.
Journal of Hypertension | 2016
Deepesh Pandey; Daijiro Tori; Yohei Nomura; Dan E. Berkowitz; Lewis H. Romer
Objective: Kruppel Like Factor 15 (KLF15) has recently been shown to be critical for activation of proinflammatory processes in vascular smooth muscle and atherogenesis. Although KLF15 is abundantly expressed in vascular endothelium there is a significant lack of knowledge regarding the role of KLF15 in the regulation of vascular endothelial function. Here we tested the hypothesis that KLF15 is a critical regulator of Arg2 transcription in hypoxia exposed human pulmonary microvascular endothelial cells (HPMEC) and that it plays critical role in pathogenesis of pulmonary hypertension (PHTN). Design and Method: Overexpression and Knockdown of KLF15 in HPMEC was acheived by transducing cells by adenoviruses encoding KLF15 cDNA and shRNA respectively. Pulmonary endothelial dysfunction was assessed by determining a. Nitric Oxide release by Sievers NO analyzer, b. superoxide production by luminol based chemiluminescence and c. acetylcholine dependent pulmonary artery relaxation measured by wire-myography. Interaction between Arg2 promoter and KLF15 was determined by Chromatin immunoprecipitation. Results: Increased expression of KLF15 in human pulmonary microvascular endothelial cells (HPMEC) and in rat pulmonary arteries decreased Arg2 mRNA, protein, and activity. HPMECs exposed to 48 hours of hypoxia, a potent stimulus for PHTN, exhibited a robust increase in Arg2 protein and mRNA expression and a reciprocal decrease in KLF15 protein levels that remain sustained after 24 hours of reoxygenation. ChIP assay indicated direct binding of KLF15 to the Arg2 promoter, which was relieved when HPMEC were exposed to hypoxia, Finally, overexpression of KLF15 reversed hypoxia-induced augmentation of arginase activity and decrements in Nitric Oxide production in HPMEC, and also reversed hypoxia-induced endothelial dysfunction in isolated rat pulmonary artery rings. Conclusions: KLF15 is a critical regulator and repressor of endothelial Arg2 expression, and thereby, NO and pulmonary endothelial function. Overexpression or activation of KLF15 may represent novel therapeutic strategies for pulmonary hypertension.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2018
Sebastian F. Barreto Ortiz; Daijiro Hori; Yohei Nomura; Xin Yun; Haiyang Jiang; Hwanmee Yong; James K. Chen; Sam Paek; Deepesh Pandey; Gautam Sikka; Anil Bhatta; Andrew Gillard; Jochen Steppan; Jae Hyung Kim; Hideo Adachi; Viachaslau Barodka; Lewis H. Romer; Steven S. An; Larissa A. Shimoda; Lakshmi Santhanam; Dan E. Berkowitz
Anesthesia & Analgesia | 2018
Yohei Nomura; Roland Faegle; Daijiro Hori; Abbas Al-Qamari; Alexander J. Nemeth; Rebecca F. Gottesman; Gayane Yenokyan; Charles H. Brown; Charles W. Hogue
Arteriosclerosis, Thrombosis, and Vascular Biology | 2017
Deepesh Pandey; Daijiro Hori; Yohei Nomura; Anil Bhatta; Dan E. Berkowitz; Lew Romer