Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yohei Tominaga is active.

Publication


Featured researches published by Yohei Tominaga.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase

Teruhisa Tsuzuki; Akinori Egashira; Hisato Igarashi; Tomoo Iwakuma; Yoko Nakatsuru; Yohei Tominaga; Hisaya Kawate; Kazuki Nakao; Kenji Nakamura; Fumio Ide; Shinobu Kura; Yusaku Nakabeppu; Motoya Katsuki; Takatoshi Ishikawa; Mutsuo Sekiguchi

Oxygen radicals, which can be produced through normal cellular metabolism, are thought to play an important role in mutagenesis and tumorigenesis. Among various classes of oxidative DNA damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is most important because of its abundance and mutagenicity. The MTH1 gene encodes an enzyme that hydrolyzes 8-oxo-dGTP to monophosphate in the nucleotide pool, thereby preventing occurrence of transversion mutations. By means of gene targeting, we have established MTH1 gene-knockout cell lines and mice. When examined 18 months after birth, a greater number of tumors were formed in the lungs, livers, and stomachs of MTH1-deficient mice, as compared with wild-type mice. The MTH1-deficient mouse will provide a useful model for investigating the role of the MTH1 protein in normal conditions and under oxidative stress.


Cancer Research | 2005

8-Oxoguanine Formation Induced by Chronic UVB Exposure Makes Ogg1 Knockout Mice Susceptible to Skin Carcinogenesis

Makoto Kunisada; Kunihiko Sakumi; Yohei Tominaga; Arief Budiyanto; Masato Ueda; Masamitsu Ichihashi; Yusaku Nakabeppu; Chikako Nishigori

8-Oxoguanine is one of the oxidative DNA damages that can result in stable mutations. The Ogg1 gene encodes the repair enzyme 8-oxoguanine-DNA glycosylase, which removes the oxidized base from DNA. In this study, we investigated the role of 8-oxoguanine in skin carcinogenesis induced by UVB irradiation using Ogg1 knockout mice (C57Bl/6J background). We examined the effect of UVB irradiation on the formation of 8-oxoguanine in epidermal cells using immunostaining and found that the level of 8-oxoguanine in Ogg1 knockout mice 24 hours after UVB irradiation remained high compared with that in wild-type and heterozygous mice. To verify the effect of chronic UVB irradiation on 8-oxoguanine formations in epidermal cells, we irradiated wild-type, heterozygous, and Ogg1 knockout mice with UVB at a dose of 2.5 kJ/m2 thrice a week for 40 weeks. We found that the mean number of tumors in Ogg1 knockout mice was 3.71, which was significantly more than in wild-type and heterozygous mice, being 1.71 and 2.28, respectively. The rate of developing malignant tumors in Ogg1 knockout mice was also significantly higher (88.5%; squamous cell carcinomas, 73.1%; sarcomas, 15.4%) than in wild-type mice (50.0%; squamous cell carcinomas, 41.7%; sarcomas, 8.3%). Moreover, the age of onset of developing skin tumors in Ogg1 knockout mice was earlier than in the other types of mice. These results clearly indicate that oxidative DNA damage induced by sunlight plays an important role in the development of skin cancers.


Cancer Research | 2007

MUTYH-Null Mice Are Susceptible to Spontaneous and Oxidative Stress–Induced Intestinal Tumorigenesis

Katsumi Sakamoto; Yohei Tominaga; Kazumi Yamauchi; Yoshimichi Nakatsu; Kunihiko Sakumi; Kaoru Yoshiyama; Akinori Egashira; Shinobu Kura; Takashi Yao; Masazumi Tsuneyoshi; Hisaji Maki; Yusaku Nakabeppu; Teruhisa Tsuzuki

MUTYH is a mammalian DNA glycosylase that initiates base excision repair by excising adenine opposite 8-oxoguanine and 2-hydroxyadenine opposite guanine, thereby preventing G:C to T:A transversion caused by oxidative stress. Recently, biallelic germ-line mutations of MUTYH have been found in patients predisposed to a recessive form of hereditary multiple colorectal adenoma and carcinoma with an increased incidence of G:C to T:A somatic mutations in the APC gene. In the present study, a systematic histologic examination revealed that more spontaneous tumors had developed in MUTYH-null mice (72 of 121; 59.5%) than in the wild type (38 of 109; 34.9%). The increased incidence of intestinal tumors in MUTYH-null mice (11 tumors in 10 of 121 mice) was statistically significant compared with the wild type (no intestinal tumors in 109 mice). Two adenomas and seven adenocarcinomas were observed in the small intestines, and two adenomas but no carcinomas were found in the colons. In MUTYH-null mice treated with KBrO(3), the occurrence of small intestinal tumors dramatically increased. The mean number of polyps induced in the small intestines of these mice was 61.88 (males, 72.75; females, 51.00), whereas it was 0.85 (males, 0.50; females, 1.00) in wild-type mice. The tumors developed predominantly in the duodenum and in the upper region of the (jejunum) small intestines. We conclude that MUTYH suppresses spontaneous tumorigenesis in mammals, thus providing experimental evidence for the association between biallelic germ-line MUTYH mutations and a recessive form of human hereditary colorectal adenoma and carcinoma.


Current Biology | 2002

Replication-associated repair of adenine:8-oxoguanine mispairs by MYH.

Harutoshi Hayashi; Yohei Tominaga; Seiki Hirano; Allison E. McKenna; Yusaku Nakabeppu; Yoshihiro Matsumoto

Cellular DNA is constantly exposed to the risk of oxidation. 8-oxoguanine (8-oxoG) is one of the major DNA lesions generated by oxidation, which is primarily corrected by base excision repair. When it is not repaired prior to replication, replicative DNA polymerases yield misinsertion of an adenine (A) opposite the 8-oxoG on the template strand, generating an A:8-oxoG mispair. MYH, a mammalian homolog of Escherichia coli MutY, is a DNA glycosylase responsible for initiating base excision repair of such a mispair by excising the adenine opposite 8-oxoG. Here, using an in vivo repair system, we show that DNA replication enhances the repair of the A:8-oxoG mispair. Repair efficiency was lower in MYH-deficient murine cells than in MYH-proficient cells. Transfection of the MYH-deficient cells with a wild-type MYH expression vector increased the efficiency of A:8-oxoG repair, indicating that a significant part of this replication-associated repair depends on MYH. Expression of a mutant MYH in which the PCNA binding motif was disrupted did not increase the repair efficiency, thus suggesting that the interaction between PCNA and MYH is critical for MYH-initiated repair of A:8-oxoG.


Journal of Biological Chemistry | 2003

Mutator Phenotype of MUTYH-null Mouse Embryonic Stem Cells

Seiki Hirano; Yohei Tominaga; Akimasa Ichinoe; Yasuhiro Ushijima; Daisuke Tsuchimoto; Yoko Honda-Ohnishi; Toshio Ohtsubo; Kunihiko Sakumi; Yusaku Nakabeppu

To evaluate the antimutagenic role of a mammalian mutY homolog, namely the Mutyh gene, which encodes adenine DNA glycosylase excising adenine misincorporated opposite 8-oxoguanine in the template DNA, we generated MUTYH-null mouse embryonic stem (ES) cells. In the MUTYH-null cells carrying no adenine DNA glycosylase activity, the spontaneous mutation rate increased 2-fold in comparison with wild type cells. The expression of wild type mMUTYH or mutant mMUTYH protein with amino acid substitutions at the proliferating cell nuclear antigen binding motif restored the increased spontaneous mutation rates of the MUTYH-null ES cells to the wild type level. The expression of a mutant mMUTYH protein with an amino acid substitution (G365D) that corresponds to a germ-line mutation (G382D) found in patients with multiple colorectal adenomas could not suppress the elevated spontaneous mutation rate of the MUTYH-null ES cells. Although the recombinant mMUTYH(G365D) purified from Escherichia coli cells had a substantial level of adenine DNA glycosylase activity as did wild type MUTYH, no adenine DNA glycosylase activity was detected in the MUTYH-null ES cells expressing the mMUTYH(G365D) mutant protein. The germ-line mutation (G382D) of the human MUTYH gene is therefore likely to be responsible for the occurrence of a mutator phenotype in these patients.


Annals of the New York Academy of Sciences | 2004

Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: From mitochondria to nuclei

Yusaku Nakabeppu; Daisuke Tsuchimoto; Akimasa Ichinoe; Mizuki Ohno; Yasuhito Ide; Seiki Hirano; Daisuke Yoshimura; Yohei Tominaga; Masato Furuichi; Kunihiko Sakumi

Abstract: In mammalian cells, more than one genome in a single cell has to be maintained throughout the entire life of the cell, namely, one in the nucleus and the other in the mitochondria. The genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are inevitably generated as a result of the respiratory function in mitochondria. To counteract such oxidative damage in nucleic acids, cells are equipped with several defense mechanisms. Modified nucleotides in the nucleotide pools are hydrolyzed, thus avoiding their incorporation into DNA or RNA. Damaged bases in DNA with relatively small chemical alterations are mainly repaired by the base excision repair (BER) system, which is initiated by the excision of damaged bases by specific DNA glycosylases. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8‐oxo‐dGTP, 8‐oxo‐dATP, and 2‐hydroxy (OH)‐dATP to the monophosphates, and MTH1 are located in the cytoplasm, mitochondria, and nucleus. We observed an increased susceptibility to spontaneous carcinogenesis in Mth1‐deficient mice and an alteration of MTH1 expression along with the accumulation of 8‐oxo‐dG in patients with various neurodegenerative diseases. Enzymes for the BER pathway, namely, 8‐oxoG DNA glycosylase (OGG1), 2‐OH‐A/adenine DNA glycosylase (MUTYH), and AP endonuclease (APEX2) are also located both in the mitochondria and in the nuclei, and the expression of mitochondrial OGG1 is altered in patients with various neurodegenerative diseases. We also observed increased susceptibilities to spontaneous carcinogenesis in OGG1 and MUTYH‐deficient mice. The increased occurrence of lung tumor in OGG1‐deficient mice was completely abolished by the concomitant disruption of the Mth1 gene.


Cancer Science | 2004

Targeted disruption of one allele of the Y‐box binding protein‐1 (YB‐1) gene in mouse embryonic stem cells and increased sensitivity to cisplatin and mitomycin C

Kotaro Shibahara; Takeshi Uchiumi; Takao Fukuda; Shinobu Kura; Yohei Tominaga; Yoshihiko Maehara; Kimitoshi Kohno; Yusaku Nakabeppu; Teruhisa Tsuzuki; Michihiko Kuwano

The eukaryotic Y‐box binding protein‐1 (YB‐1) functions in various biological processes, including transcriptional and translational control, DNA repair, drug resistance, and cell proliferation. To elucidate the physiological role of the YB‐1 protein, we disrupted one allele of mouse YB‐1 in embryonic stem (ES) cells. Northern blot analysis revealed that YB‐1+/‐ ES cells with one intact allele contain approximately one‐half the amount of mRNA detected in wild‐type (YB‐1+/+) cells. We further found that the protein level of YB‐1+/‐ cells was reduced to approximately 50–60% compared with that of YB‐1+/+ cells. However, no apparent growth difference was found between YB‐1+/‐ and YB‐1+/+ cells. YB‐1+/‐ cells showed increased sensitivity to cisplatin and mitomycin C, but not to etoposide, X‐ray or UV irradiation, as compared to YB‐1+/+ cells. YB‐1 may have the capacity to exert a protective role against cytotoxic effects of DNA damaging agents, and may be involved in certain aspects of drug resistance.


Nucleic Acids Research | 2005

A functional analysis of the DNA glycosylase activity of mouse MUTYH protein excising 2-hydroxyadenine opposite guanine in DNA

Yasuhiro Ushijima; Yohei Tominaga; Tomofumi Miura; Daisuke Tsuchimoto; Kunihiko Sakumi; Yusaku Nakabeppu

2-Hydroxy-2-deoxyadenosine triphosphate (2-OH-dATP), generated by the oxidation of dATP, can be misincorporated by DNA polymerases opposite guanine in template DNA during DNA replication, thus causing spontaneous mutagenesis. We demonstrated that mouse MUTYH (mMUTYH) has a DNA glycosylase activity excising not only adenine opposite 8-oxoguanine (8-oxoG) but also 2-hydroxyadenine (2-OH-A) opposite guanine, using purified recombinant thioredoxin-mMUTYH fusion protein. mMUTYH formed a stable complex with duplex oligonucleotides containing an adenine:8-oxoG pair, but the binding of mMUTYH to oligonucleotides containing a 2-OH-A:guanine pair was barely detectable, thus suggesting that mMUTYH recognizes and interacts with these two substrates in a different manner which may reflect the difference in the base excision repair process for each substrate. Mutant mMUTYH with G365D amino acid substitution, corresponding to a G382D germline mutation of human MUTYH found in familial adenomatous polyposis patients, almost completely retained its DNA glycosylase activity excising adenine opposite 8-oxoG; however, it possessed 1.5% of the wild-type activity excising 2-OH-A opposite guanine. Our results imply that the reduced repair capacity of the mutant hMUTYH(G382D), which inefficiently excises 2-OH-A opposite guanine, results in an increased occurrence of somatic G:C to T:A transversion mutations in the APC gene as well as tumorigenesis in the colon.


Cancer Science | 2012

Significance of combination therapy of zoledronic acid and gemcitabine on pancreatic cancer

Ming Zhao; Yohei Tominaga; Kenoki Ohuchida; Kazuhiro Mizumoto; Lin Cui; Shingo Kozono; Hayato Fujita; Ryo Maeyama; Hiroki Toma; Masao Tanaka

In the present study, we examined the cytotoxic effects of combination therapy with zoledronic acid (ZOL) and gemcitabine (GEM) on pancreatic cancer cells in vitro and in vivo. Four human pancreatic cancer cell lines were treated with ZOL, GEM or a combination of both, and the effects of the respective drug regimens on cell proliferation, invasion and matrix metalloproteinase (MMP) expression were examined. A pancreatic cancer cell line was also intrasplenically or orthotopically implanted into athymic mice and the effects of these drugs on tumor metastasis and growth in vivo were evaluated by histological and immunohistochemical analyses. Combination treatment with low doses of ZOL and GEM efficiently inhibited the proliferation (P < 0.001) and invasion (P < 0.001) of pancreatic cancer cells in vitro. Western blotting assay revealed that MMP‐2 and MMP‐9 expression levels were decreased after ZOL treatment. In vivo, combined treatment significantly inhibited tumor growth (P < 0.05) and the development of liver metastasis (P < 0.05). These data revealed that ZOL and GEM, when used in combination, have significant antitumor, anti‐metastatic and anti‐angiogenic effects on pancreatic cancer cells. The present study is the first to report the significance of the combination treatment of ZOL and GEM in pancreatic cancer using an in vivo model. These data are promising for the future application of this drug regimen in patients with pancreatic cancer. (Cancer Sci 2012; 103: 58–66)


Cell Death & Differentiation | 2003

ΔFosB, but not FosB, induces delayed apoptosis independent of cell proliferation in the Rat1a embryo cell line

K. Tahara; Daisuke Tsuchimoto; Yohei Tominaga; Sadamitsu Asoh; Shigeo Ohta; Masatoshi Kitagawa; Hidenori Horie; Toshihiko Kadoya; Yusaku Nakabeppu

AbstractThe fates of Rat1a cells expressing FosB and ΔFosB as fusion proteins (ER-FosB, ER-ΔFosB) with the ligand binding domain of human estrogen receptor were examined. The binding of estrogen to the fusion proteins resulted in their nuclear translocation and triggered cell proliferation, and thereafter delayed cell death was observed only in cells expressing ER-ΔFosB. The proliferation of Rat1a cells, but not cell death triggered by ER-ΔFosB, was completely abolished by butyrolactone I, an inhibitor of cycline-dependent kinases, and was partly suppressed by antisense oligonucleotides against galectin-1, whose expression is induced after estrogen administration. The cell death was accompanied by the activation of caspase-3 and -9, the fragmentation of the nuclear genome and cytochrome c release from the mitochondria, and was suppressed by zDEVD-fmk and zLEHD-fmk but not zIETD-fmk. The cell death was not suppressed by exogenous His-PTD-Bcl-xL at all, suggesting involvement of a Bcl-xL-resistant pathway for cytochrome c release.

Collaboration


Dive into the Yohei Tominaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge