Yoko Tajima
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoko Tajima.
Journal of Biological Chemistry | 2009
Keisuke Yanagida; Kayo Masago; Hiroki Nakanishi; Yasuyuki Kihara; Fumie Hamano; Yoko Tajima; Ryo Taguchi; Takao Shimizu; Satoshi Ishii
p2y5 is an orphan G protein-coupled receptor that is closely related to the fourth lysophosphatidic acid (LPA) receptor, LPA4. Here we report that p2y5 is a novel LPA receptor coupling to the G13-Rho signaling pathway. “LPA receptor-null” RH7777 and B103 cells exogenously expressing p2y5 showed [3H]LPA binding, LPA-induced [35S]guanosine 5′-3-O-(thio)triphosphate binding, Rho-dependent alternation of cellular morphology, and Gs/13 chimeric protein-mediated cAMP accumulation. LPA-induced contraction of human umbilical vein endothelial cells was suppressed by small interfering RNA knockdown of endogenously expressed p2y5. We also found that 2-acyl-LPA had higher activity to p2y5 than 1-acyl-LPA. A recent study has suggested that p2y5 is an LPA receptor essential for human hair growth. We confirmed that p2y5 is a functional LPA receptor and propose to designate this receptor LPA6.
Journal of Biological Chemistry | 2009
Hirotaka Imai; Nao Hakkaku; Ryo Iwamoto; Jyunko Suzuki; Toshiyuki Suzuki; Yoko Tajima; Kumiko Konishi; Shintaro Minami; Shizuko Ichinose; Kazuhiro Ishizaka; Seiji Shioda; Satoru Arata; Masuhiro Nishimura; Shinsaku Naito; Yasuhito Nakagawa
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. GPx4 is strongly expressed in the mitochondria of testis and spermatozoa. We previously found a significant decrease in the expression of GPx4 in spermatozoa from 30% of infertile human males diagnosed with oligoasthenozoospermia (Imai, H., Suzuki, K., Ishizaka, K., Ichinose, S., Oshima, H., Okayasu, I., Emoto, K., Umeda, M., and Nakagawa, Y. (2001) Biol. Reprod. 64, 674–683). To clarify whether defective GPx4 in spermatocytes causes male infertility, we established spermatocyte-specific GPx4 knock-out mice using a Cre-loxP system. All the spermatocyte-specific GPx4 knock-out male mice were found to be infertile despite normal plug formation after mating and displayed a significant decrease in the number of spermatozoa. Isolated epididymal GPx4-null spermatozoa could not fertilize oocytes in vitro. These spermatozoa showed significant reductions of forward motility and the mitochondrial membrane potential. These impairments were accompanied by the structural abnormality, such as a hairpin-like flagella bend at the midpiece and swelling of mitochondria in the spermatozoa. These results demonstrate that the depletion of GPx4 in spermatocytes causes severe abnormalities in spermatozoa. This may be one of the causes of male infertility in mice and humans.
PLOS ONE | 2014
Masaki Ishikawa; Keiko Maekawa; Kosuke Saito; Yuya Senoo; Masayo Urata; Mayumi Murayama; Yoko Tajima; Yuji Kumagai; Yoshiro Saito
Blood is a commonly used biofluid for biomarker discovery. Although blood lipid metabolites are considered to be potential biomarker candidates, their fundamental properties are not well characterized. We aimed to (1) investigate the matrix type (serum vs. plasma) that may be preferable for lipid biomarker exploration, (2) elucidate age- and gender-associated differences in lipid metabolite levels, and (3) examine the stability of lipid metabolites in matrix samples subjected to repeated freeze-thaw cycles. Using liquid chromatography-mass spectrometry, we performed lipidomic analyses for fasting plasma and serum samples for four groups (15 subjects/group) of young and elderly (25–34 and 55–64 years old, respectively) males and females and for an additional aliquot of samples from young males, which were subjected to repeated freeze-thaw cycles. Lysophosphatidylcholine and diacylglycerol levels were higher in serum than in plasma samples, suggesting that the clotting process influences serum lipid metabolite levels. Gender-associated differences highlighted that the levels of many sphingomyelin species were significantly higher in females than in males, irrespective of age and matrix (plasma and serum). Age-associated differences were more prominent in females than in males, and in both matrices, levels of many triacylglycerols were significantly higher in elderly females than in young females. Plasma and serum levels of most lipid metabolites were reduced by freeze-thawing. Our results indicate that plasma is an optimal matrix for exploring lipid biomarkers because it represents the original properties of an individual’s blood sample. In addition, the levels of some blood lipid species of healthy adults showed gender- and age-associated differences; thus, this should be considered during biomarker exploration and its application in diagnostics. Our fundamental findings on sample selection and handling procedures for measuring blood lipid metabolites is important for ensuring the quality of biomarkers identified and its qualification process.
Lipids in Health and Disease | 2013
Yoko Tajima; Masaki Ishikawa; Keiko Maekawa; Mayumi Murayama; Yuya Senoo; Tomoko Nishimaki-Mogami; Hiroki Nakanishi; Kazutaka Ikeda; Makoto Arita; Ryo Taguchi; Alato Okuno; Ryuta Mikawa; Shumpei Niida; Osamu Takikawa; Yoshiro Saito
BackgroundAlzheimer’s disease (AD), the most common cause of dementia among neurodegenerative diseases, afflicts millions of elderly people worldwide. In addition to amyloid-beta (Aβ) peptide and phosphorylated tau, lipid dysregulation is suggested to participate in AD pathogenesis. However, alterations in individual lipid species and their role in AD disease progression remain unclear.MethodsWe performed a lipidomic analysis using brain tissues and plasma obtained from mice expressing mutated human amyloid precursor protein (APP) and tau protein (Tg2576×JNPL3) (APP/tau mice) at 4 (pre-symptomatic phase), 10 (early symptomatic) and 15 months (late symptomatic).ResultsLevels of docosahexaenoyl (22:6) cholesterol ester (ChE) were markedly increased in APP/tau mice compared to controls at all stages examined. Several species of ethanolamine plasmalogens (pPEs) and sphingomyelins (SMs) showed different levels between brains from APP/tau and control mice at various stages of AD. Increased levels of 12-hydroxyeicosatetraenoic acid (12-HETE) during the early symptomatic phase were consistent with previous reports using human AD brain tissue. In addition, 19,20-dihydroxy-docosapentaenoic acid (19,20-diHDoPE) and 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE), which are produced from docosahexaenoic acid and eicosapentaenoic acid via 19,20-epoxy-docosapentaenoic acid (19,20-EpDPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EpETE), respectively, were significantly increased in APP/tau brains during the pre-symptomatic phase, and concomitant increases occurred in plasma. Several arachidonic acid metabolites such as prostaglandin D2 (PGD2) and 15-hydroxyeicosatetraenoic acid (15-HETE), which have potential deteriorating and protective actions, respectively, were decreased in the early symptomatic phase of APP/tau mice. Significant decreases in phosphatidylcholines and PEs with polyunsaturated fatty acids were also detected in the late symptomatic phase, indicating a perturbation of membrane properties.ConclusionOur results provide fundamental information on lipid dysregulation during various stages of human AD.
Journal of Molecular and Cellular Cardiology | 2013
Keiko Maekawa; Akiyoshi Hirayama; Yuko Iwata; Yoko Tajima; Tomoko Nishimaki-Mogami; Shoko Sugawara; Noriko Ueno; Hiroshi Abe; Masaki Ishikawa; Mayumi Murayama; Yumiko Matsuzawa; Hiroki Nakanishi; Kazutaka Ikeda; Makoto Arita; Ryo Taguchi; Naoto Minamino; Shigeo Wakabayashi; Tomoyoshi Soga; Yoshiro Saito
Dilated cardiomyopathy (DCM), a common cause of heart failure, is characterized by cardiac dilation and reduced left ventricular ejection fraction, but the underlying mechanisms remain unclear. To investigate the mechanistic basis, we performed global metabolomic analysis of myocardial tissues from the left ventricles of J2N-k cardiomyopathic hamsters. This model exhibits symptoms similar to those of human DCM, owing to the deletion of the δ-sarcoglycan gene. Charged and lipid metabolites were measured by capillary electrophoresis mass spectrometry (MS) and liquid chromatography MS(/MS), respectively, and J2N-k hamsters were compared with J2N-n healthy controls at 4 (presymptomatic phase) and 16weeks (symptomatic) of age. Disturbances in membrane phospholipid homeostasis were initiated during the presymptomatic phase. Significantly different levels of charged metabolites, occurring mainly in the symptomatic phase, were mapped to primary metabolic pathways. Reduced levels of metabolites in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, together with large decreases in major triacylglycerol levels, suggested that decreased energy production leads to cardiac contractile dysfunction in the symptomatic phase. A mild reduction in glutathione and a compensatory increase in ophthalmate levels suggest increased oxidative stress in diseased tissues, which was confirmed by histochemical staining. Increased levels of 4 eicosanoids, including prostaglandin (PG) E2 and 6-keto-PGF1α, in the symptomatic phase suggested activation of the protective response pathways. These results provide mechanistic insights into DCM pathogenesis and may help identify new targets for therapeutic intervention and diagnosis.
Journal of Negative Results in Biomedicine | 2014
Aki Ieyasu; Yoko Tajima; Shigeki Shimba; Hiromitsu Nakauchi; Satoshi Yamazaki
BackgroundCircadian rhythms are known to influence a variety of biological phenomena such as cell cycle, sleep-wake rhythm, hormone release and other important physiological functions. Given that cell cycle entry of hibernating hematopoietic stem cells (HSCs) plays a critical role in controlling hematopoiesis, we asked functional significance of the clock gene Bmal1, which plays a central role in regulating circadian rhythms as a transcription factor. Here we investigated the necessity of Bmal1 for HSC functions using Bmal1 deficient (Bmal1−/−) mice.FindingsUsing colony-forming assays in vitro, we found that the frequency of mixed colony formation between Bmal1+/+ and Bmal1−/− CD34−KSL cells does not differ significantly. Competitive bone marrow assays also revealed that Bmal1−/− bone marrow cells competed normally with wild-type cells and displayed long-term multi-hematopoietic lineage reconstitution. In addition, there were no significant differences in the frequencies and hibernation state of bone marrow HSCs between Bmal1+/+ and Bmal1−/− mice, suggesting that they are independent of circadian rhythms.ConclusionsThis paper discusses the necessity of circadian rhythms for HSC functions. Our data clearly shows that a key circadian clock gene Bmal1 is dispensable for intrinsic functions of HSCs, such as differentiation, proliferation and repopulating ability.
Journal of Biological Chemistry | 2014
Keiichi Ito; Satoshi Yamazaki; Ryo Yamamoto; Yoko Tajima; Ayaka Yanagida; Toshihiro Kobayashi; Megumi Kato-Itoh; Shigeru Kakuta; Yoichiro Iwakura; Hiromitsu Nakauchi; Akihide Kamiya
Background: The role and precise expression pattern of individual brain-expressed X-linked genes in vivo were unknown. Results: Bex2-EGFP knock-in–knock-out mice were viable and fertile. Outside the brain, EGFP was expressed in specific cell populations. Conclusion: Bex2 plays redundant roles in vivo but is specifically expressed in endocrine and stem/progenitor cells. Significance: Bex2 is a novel marker for endocrine and stem/progenitor cells. Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells.
Stem cell reports | 2017
Aki Ieyasu; Reiko Ishida; Takaharu Kimura; Maiko Morita; Adam C. Wilkinson; Kazuhiro Sudo; Toshinobu Nishimura; Jun Ohehara; Yoko Tajima; Chen-Yi Lai; Makoto Otsu; Yukio Nakamura; Hideo Ema; Hiromitsu Nakauchi; Satoshi Yamazaki
Summary Hematopoietic stem cells (HSCs) are considered one of the most promising therapeutic targets for the treatment of various blood disorders. However, due to difficulties in establishing stable maintenance and expansion of HSCs in vitro, their insufficient supply is a major constraint to transplantation studies. To solve these problems we have developed a fully defined, all-recombinant protein-based culture system. Through this system, we have identified hemopexin (HPX) and interleukin-1α as responsible for HSC maintenance in vitro. Subsequent molecular analysis revealed that HPX reduces intracellular reactive oxygen species levels within cultured HSCs. Furthermore, bone marrow immunostaining and 3D immunohistochemistry revealed that HPX is expressed in non-myelinating Schwann cells, known HSC niche constituents. These results highlight the utility of this fully defined all-recombinant protein-based culture system for reproducible in vitro HSC culture and its potential to contribute to the identification of factors responsible for in vitro maintenance, expansion, and differentiation of stem cell populations.
PLOS ONE | 2016
Kazuo Okemoto; Keiko Maekawa; Yoko Tajima; Masahiro Tohkin; Yoshiro Saito; Albert J. Fornace
Technological advancements in past decades have led to the development of integrative analytical approaches to lipidomics, such as liquid chromatography-mass spectrometry (LC/MS), and information about biogenic lipids is rapidly accumulating. Although several cohort-based studies have been conducted on the composition of urinary lipidome, the data on urinary lipids cross-classified by sex, age, and body mass index (BMI) are insufficient to screen for various abnormalities. To promote the development of urinary lipid metabolome-based diagnostic assay, we analyzed 60 urine samples from healthy white adults (young (c.a., 30 years) and old (c.a., 60 years) men/women) using LC/MS. Women had a higher urinary concentration of omega-3 12-lipoxygenase (LOX)-generated oxylipins with anti-inflammatory activity compared to men. In addition, young women showed increased abundance of poly-unsaturated fatty acids (PUFAs) and cytochrome P450 (P450)-produced oxylipins with anti-hypertensive activity compared with young men, whereas elderly women exhibited higher concentration of 5-LOX-generated anti-inflammatory oxylipins than elderly men. There were no significant differences in urinary oxylipin levels between young and old subjects or between subjects with low and high BMI. Our findings suggest that sex, but neither ages nor BMI could be a confounding factor for measuring the composition of urinary lipid metabolites in the healthy population. The information showed contribute to the development of reliable biomarker findings from urine.
Scientific Reports | 2017
Yoko Tajima; Keiichi Ito; Ayumi Umino; Adam C. Wilkinson; Hiromitsu Nakauchi; Satoshi Yamazaki
The nature of hematopoietic stem cells under normal hematopoiesis remained largely unknown due to the limited assays available to monitor their behavior in situ. Here, we develop a new mouse model to transfer genes specifically into the primitive hematopoietic stem cell compartment through the utilization of a modified Rcas/TVA system. We succeeded in transferring a GFP reporter gene into adult hematopoietic stem cells in vivo, which are predominantly quiescent, by generating pseudotyped-lentivirus. Furthermore, we demonstrate the utility of this system to study neonatal hematopoiesis, a developmental stage that has been difficult to analyze to date. Using the system developed in this study, we observed continuous multi-lineage hematopoietic cell supply in peripheral blood from Krt7-positive hematopoietic stem cells during unperturbed homeostatic condition. This powerful experimental system could provide a new standard tool to analyze hematopoiesis under physiological condition without transplantation.