Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromitsu Nakauchi is active.

Publication


Featured researches published by Hiromitsu Nakauchi.


Science | 1996

Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell

Masatake Osawa; Ken-ichi Hanada; Hirofumi Hamada; Hiromitsu Nakauchi

Hematopoietic stem cells (HSCs) supply all blood cells throughout life by making use of their self-renewal and multilineage differentiation capabilities. A monoclonal antibody raised to the mouse homolog of CD34 (mCD34) was used to purify mouse HSCs to near homogeneity. Unlike in humans, primitive adult mouse bone marrow HSCs were detected in the mCD34 low to negative fraction. Injection of a single mCD34lo/−, c-Kit+, Sca-1+, lineage markers negative (Lin−) cell resulted in long-term reconstitution of the lymphohematopoietic system in 21 percent of recipients. Thus, the purified HSC population should enable analysis of the self-renewal and multilineage differentiation of individual HSCs.


Nature | 2011

Frequent pathway mutations of splicing machinery in myelodysplasia.

Kenichi Yoshida; Masashi Sanada; Yuichi Shiraishi; Daniel Nowak; Yasunobu Nagata; Ryo Yamamoto; Yusuke Sato; Aiko Sato-Otsubo; Ayana Kon; Masao Nagasaki; George Chalkidis; Yutaka Suzuki; Masashi Shiosaka; Ryoichiro Kawahata; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Ken Ishiyama; Hiraku Mori; Florian Nolte; Wolf-Karsten Hofmann; Shuichi Miyawaki; Sumio Sugano; Claudia Haferlach; H. Phillip Koeffler; Lee-Yung Shih; Torsten Haferlach; Shigeru Chiba; Hiromitsu Nakauchi

Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (∼45 to ∼85%) in, and highly specific to, myeloid neoplasms showing features of myelodysplasia. Conspicuously, most of the mutations, which occurred in a mutually exclusive manner, affected genes involved in the 3′-splice site recognition during pre-mRNA processing, inducing abnormal RNA splicing and compromised haematopoiesis. Our results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.


Cell Stem Cell | 2007

Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool

Kana Miyamoto; Kiyomi Y. Araki; Kazuhito Naka; Fumio Arai; Keiyo Takubo; Satoshi Yamazaki; Sahoko Matsuoka; Takeshi Miyamoto; Keisuke Ito; Masako Ohmura; Chen Chen; Kentaro Hosokawa; Hiromitsu Nakauchi; Keiko Nakayama; Keiichi I. Nakayama; Mine Harada; Noboru Motoyama; Toshio Suda; Atsushi Hirao

Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.


Hepatology | 2006

Side population purified from hepatocellular carcinoma cells harbors cancer stem cell–like properties†‡

Tetsuhiro Chiba; Kaoru Kita; Yun-Wen Zheng; Osamu Yokosuka; Hiromitsu Saisho; Atsushi Iwama; Hiromitsu Nakauchi; Hideki Taniguchi

Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti‐apoptotic properties compared with those of non‐SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 × 10 3 SP cells were sufficient for tumor formation, whereas an injection of 1 × 10 6 non‐SP cells did not initiate tumors. Re‐analysis of SP cell–derived tumors showed that SP cells generated both SP and non‐SP cells and tumor‐initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non‐SP cells, and several so‐called “stemness genes” were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy. (HEPATOLOGY 2006;44:240–251.)


Immunity | 1995

Developmental defects of lymphoid cells in Jak3 kinase-deficient mice.

Seung Yong Park; Kaoru Saijo; Takamune Takahashi; Masataka Osawa; Hisashi Areas; Nakami Hirayama; Keiko Miyake; Hiromitsu Nakauchi; Takuji Shirasawa; Takashi Saito

Jak3 is a tyrosine kinase mediating cytokine receptor signaling through the association with the common gamma chain of the cytokine receptors such as IL-2, IL-4, IL-7, IL-9, and IL-15. Unlike other members of the Jak family, the expression of Jak3 is highly restricted in hematopoietic cells. To elucidate in vivo function of Jak3, Jak3-deficient mice were generated by homologous recombination. Mice homozygous for Jak3 null mutation showed severe defects, specifically in lymphoid cells. B cell precursors in bone marrow, thymocytes, and both T and B cells in the spleen drastically decreased, although these defects were significantly recovered as aging occurred. Peripheral lymph nodes, NK cells, dendritic epidermal T cells, and intestinal intraepithelial gamma delta T cells were absent. Normal number of hematopoietic stem cells in bone marrow from Jak3-deficient mice and the similar capability to generate myeloid and erythroid colonies as wild-type mice indicated specific defects in lymphoid stem cells. Furthermore, the abnormal architecture of lymphoid organs suggested the involvement of Jak3 in the function of epithelial cells. T cells developed in the mutant mice did not respond to either IL-2, IL-4, or IL-7. These findings establish the crucial role of Jak3 in the development of lymphoid cells.


Cell | 2011

Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche

Satoshi Yamazaki; Hideo Ema; Göran Karlsson; Tomoyuki Yamaguchi; Hiroyuki Miyoshi; Seiji Shioda; Makoto M. Taketo; Stefan Karlsson; Atsushi Iwama; Hiromitsu Nakauchi

Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β.


Journal of Cell Biology | 2002

Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver

Atsushi Suzuki; Yun Wen Zheng; Shin Kaneko; Masafumi Onodera; Katashi Fukao; Hiromitsu Nakauchi; Hideki Taniguchi

Using flow cytometry and single cell–based assays, we prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewing capability. These cells could be clonally propagated in culture where they continuously produced hepatocytes and cholangiocytes as descendants while maintaining primitive stem cells. When cells that expanded in vitro were transplanted into recipient animals, they morphologically and functionally differentiated into hepatocytes and cholangiocytes with reconstitution of hepatocyte and bile duct structures. Furthermore, these cells differentiated into pancreatic ductal and acinar cells or intestinal epithelial cells when transplanted into pancreas or duodenal wall. These data indicate that self-renewing pluripotent stem cells persist in the developing mouse liver and that such cells can be induced to become cells of other organs of endodermal origin under appropriate microenvironment. Manipulation of hepatic stem cells may provide new insight into therapies for diseases of the digestive system.


Nature Genetics | 2007

Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation

Aaheli Roy Choudhury; Zhenyu Ju; Meta Wulandari Djojosubroto; Andrea Schienke; André Lechel; Sonja Schaetzlein; Hong Jiang; Anna Stepczynska; Chunfang Wang; Jan Buer; Han-Woong Lee; Thomas von Zglinicki; Arnold Ganser; Peter Schirmacher; Hiromitsu Nakauchi; K. Lenhard Rudolph

Telomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1–5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice. The in vivo function of p21 in the context of telomere dysfunction is unknown. Here we show that deletion of p21 prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres. p21 deletion improved hematolymphopoiesis and the maintenance of intestinal epithelia without rescuing telomere function. Moreover, deletion of p21 rescued proliferation of intestinal progenitor cells and improved the repopulation capacity and self-renewal of hematopoietic stem cells from mice with dysfunctional telomeres. In these mice, apoptotic responses remained intact, and p21 deletion did not accelerate chromosomal instability or cancer formation. This study provides experimental evidence that telomere dysfunction induces p21-dependent checkpoints in vivo that can limit longevity at the organismal level.


Nature | 2009

Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms

Masashi Sanada; Takahiro Suzuki; Lee-Yung Shih; Makoto Otsu; Motohiro Kato; Satoshi Yamazaki; Azusa Tamura; Hiroaki Honda; Mamiko Sakata-Yanagimoto; Keiki Kumano; Hideaki Oda; Tetsuya Yamagata; Junko Takita; Noriko Gotoh; Kumi Nakazaki; Norihiko Kawamata; Masafumi Onodera; Masaharu Nobuyoshi; Yasuhide Hayashi; Hiroshi Harada; Mineo Kurokawa; Shigeru Chiba; Hiraku Mori; Keiya Ozawa; Mitsuhiro Omine; Hisamaru Hirai; Hiromitsu Nakauchi; H. Phillip Koeffler; Seishi Ogawa

Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl-/- haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl+/+ HSPCs, and transduction of C-CBL mutants into c-Cbl-/- HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl+/+ background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.


Nature Immunology | 2000

Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes

Akira Shibuya; Norihisa Sakamoto; Yoshio Shimizu; Kazuko Shibuya; Mitsujiro Osawa; Takashi Hiroyama; Helen J. Eyre; Grant R. Sutherland; Yuichi Endo; Teizo Fujita; Tomoyuki Miyabayashi; Seiji Sakano; Takao Tsuji; Eiichi Nakayama; Joseph H. Phillips; Lewis L. Lanier; Hiromitsu Nakauchi

IgM is the first antibody to be produced in a humoral immune response and plays an important role in the primary stages of immunity. Here we describe a mouse Fc receptor, designated Fcα/μR, and its human homolog, that bind both IgM and IgA with intermediate or high affinity. Fcα/μR is constitutively expressed on the majority of B lymphocytes and macrophages. Cross-linking Fcα/μR expressed on a pro-B cell line Ba/F3 transfectant with soluble IgM or IgM-coated microparticles induced internalization of the receptor. Fcα/μR also mediated primary B lymphocyte endocytosis of IgM-coated Staphylococcus aureus. Thus, Fcα/μR is involved in the primary stages of the immune response to microbes.

Collaboration


Dive into the Hiromitsu Nakauchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge