Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong-Hae Han is active.

Publication


Featured researches published by Yong-Hae Han.


Aaps Journal | 2006

Current industrial practices of assessing permeability and P-glycoprotein interaction

Praveen Balimane; Yong-Hae Han; Saeho Chong

Combination of the in vitro models that are high throughput but less predictive and the in vivo models that are low throughput but more predictive is used effectively to evaluate the intestinal permeability and transport characteristics of a large number of drug candidates during lead selection and lead optimization processes. Parallel artificial membrane permeability assay and Caco-2 cells are the most frequently used in vitro models to assess intestinal permeability. The popularity of these models stems from their potential for high throughput, cost effectiveness, and adequate predictability of absorption potential in humans. However, several caveats associated with these models (eg, poor predictability for transporter-mediated and paracellularly absorbed compounds, significant nonspecific binding to cells/devices leading to poor recovery, variability associated with experimental factors) need to be considered carefully to realize their full potential. P-glycoprotein, among other pharmaceutically relevant transporters, has been well demonstrated to be the major determinant of drug disposition. The review article presents an objective analysis of the permeability and transporter models currently being used in the pharmaceutical industry and could help guide the discovery scientists in implementing these models in an optimal fashion.


Clinical Pharmacokinectics | 2007

Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol

Hongjian Zhang; Donghui Cui; Bonnie Wang; Yong-Hae Han; Praveen Balimane; Zheng Yang; Michael Sinz; A. David Rodrigues

Abstract17α-Ethinylestradiol (EE) is widely used as the estrogenic component of oral contraceptives (OC). In vitro and in vivo metabolism studies indicate that EE is extensively metabolised, primarily via intestinal sulfation and hepatic oxidation, glucuronidation and sulfation. Cytochrome P450 (CYP)3A4-mediated EE 2-hydroxylation is the major pathway of oxidative metabolism of EE. For some time it has been known that inducers of drug-metabolising enzymes (such as the CYP3A4 inducer rifampicin [rifampin]) can lead to breakthrough bleeding and contraceptive failure. Conversely, inhibitors of drug-metabolising enzymes can give rise to elevated EE plasma concentrations and increased risks of vascular disease and hypertension. In vitro studies have also shown that EE inhibits a number of human CYP enzymes, such as CYP2C19, CYP3A4 and CYP2B6. Consequently, there are numerous reports in the literature describing EE-containing OC formulations as perpetrators of pharmacokinetic drug interactions. Because EE may participate in multiple pharmacokinetic drug interactions as either a victim or perpetrator, pharmaceutical companies routinely conduct clinical drug interaction studies with EE-containing OCs when evaluating new chemical entities in development. It is therefore critical to understand the mechanisms underlying these drug interactions. Such an understanding can enable the interpretation of clinical data and lead to a greater appreciation of the profile of the drug by physicians, clinicians and regulators. This article summarises what is known of the drug-metabolising enzymes and transporters governing the metabolism, disposition and excretion of EE. An effort is made to relate this information to known clinical drug-drug interactions. The inhibition and induction of drug-metabolising enzymes by EE is also reviewed.


Journal of Medicinal Chemistry | 2014

The Discovery of Asunaprevir (BMS-650032), An Orally Efficacious NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection

Paul Michael Scola; Li-Qiang Sun; Alan Xiangdong Wang; Jie Chen; Ny Sin; Brian Lee Venables; Sing-Yuen Sit; Yan Chen; Anthony J. Cocuzza; Donna M. Bilder; Stanley V. D’Andrea; Barbara Zheng; Piyasena Hewawasam; Yong Tu; Jacques Friborg; Paul Falk; Dennis Hernandez; Steven Levine; Chaoqun Chen; Fei Yu; Amy K. Sheaffer; Guangzhi Zhai; Diana Barry; Jay O. Knipe; Yong-Hae Han; Richard Schartman; Maria Donoso; Kathy Mosure; Michael Sinz; Tatyana Zvyaga

The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).


Drug Metabolism and Disposition | 2013

Characterization of Efflux Transporters Involved in Distribution and Disposition of Apixaban

Donglu Zhang; Kan He; John J. Herbst; Janet Kolb; Wilson Shou; Lifei Wang; Praveen Balimane; Yong-Hae Han; Jinping Gan; Charles Frost; W. Griffith Humphreys

The studies reported here were conducted to investigate the transport characteristics of apixaban (1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide) and to understand the impact of transporters on apixaban distribution and disposition. In human permeability glycoprotein (P-gp)- and breast cancer resistance protein (BCRP)-cDNA–transfected cell monolayers as well as Caco-2 cell monolayers, the apparent efflux ratio of basolateral-to-apical (PcB-A) versus apical-to-basolateral permeability (PcA-B) of apixaban was >10. The P-gp- and BCRP-facilitated transport of apixaban was concentration- and time-dependent and did not show saturation over a wide range of concentrations (1–100 μM). The efflux transport of apixaban was also demonstrated by the lower mucosal-to-serosal permeability than that of the serosal-to-mucosal direction in isolated rat jejunum segments. Apixaban did not inhibit digoxin transport in Caco-2 cells. Ketoconazole decreased the P-gp-mediated apixaban efflux in Caco-2 and the P-gp-cDNA–transfected cell monolayers, but did not affect the apixaban efflux to a meaningful extent in the BCRP-cDNA–transfected cell monolayers. Coincubation of a P-gp inhibitor (ketoconazole or cyclosporin A) and a BCRP inhibitor (Ko134) provided more complete inhibition of apixaban efflux in Caco-2 cells than separate inhibition by individual inhibitors. Naproxen inhibited apixaban efflux in Caco-2 cells but showed only a minimal effect on apixaban transport in the BCRP-transfected cells. Naproxen was the first nonsteroidal antiinflammatory drug that was demonstrated as a weak P-gp inhibitor. These results demonstrate that apixaban is a substrate for efflux transporters P-gp and BCRP, which can help explain its low brain penetration, and low fetal exposures and high milk excretion in rats.


Drug Metabolism and Disposition | 2010

Transporter Studies with the 3-O-Sulfate Conjugate of 17α-Ethinylestradiol: Assessment of Human Kidney Drug Transporters

Yong-Hae Han; Dennis Busler; Yang Hong; Yuan Tian; Cliff Chen; A. David Rodrigues

17α-Ethinylestradiol (EE2), a synthetic and potent estrogen receptor agonist, is extensively metabolized in both intestine and liver and is largely excreted in bile and urine as the 3-O-sulfate (EE2-Sul) and 3-O-glucuronide. In the present study, EE2-Sul was evaluated as a substrate of various transporters known to be expressed in the kidney. Uptake studies were performed with human epithelial cells [human embryonic kidney (HEK)-293] that contained individually expressed organic cation transporter 2 (OCT2), organic anion transporter (OAT) forms 3 and 4, and multidrug and toxin extrusion 1 (MATE1). The transporter phenotyping studies were extended to include insect cell (Sf9) membrane vesicles that expressed multidrug resistance-associated protein 4 (MRP4) and Madin-Darby canine kidney cells that expressed OAT1. Based on the results obtained, we concluded that EE2-Sul serves as a substrate of OAT3 and OAT4, but not OCT2, OAT1, MATE1, and MRP4. First, EE2-Sul uptake was highly increased in OAT3/HEK-293 cells (versus mock/HEK-293 cells) and was inhibited by OAT3 inhibitors such as bromosulfophthalein (BSP), cimetidine, and probenecid. OAT3-mediated uptake also conformed to single-Km (Michaelis constant) kinetics (Km = 21.1 μM). Second, EE2-Sul uptake was also significantly higher in OAT4/HEK-293 cells and was inhibited by BSP, methotrexate, and probenecid. In contrast to OAT3, OAT4-dependent uptake was characterized by a two-Km model (Km1 = 1.6 μM; Km2 = 195 μM). Based on the results of this study, we hypothesize that EE2-Sul is taken up into renal proximal tubule cells by OAT3, and OAT4 plays a role in its secretion into the renal brush border lumen.


Drug Metabolism and Disposition | 2016

Diclofenac and Its Acyl Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as Human Drug Transporter Substrates In Vitro

Yingru Zhang; Yong-Hae Han; Putluru Sp; Matta Mk; Kole P; Sandhya Mandlekar; Furlong Mt; Tongtong Liu; Ramaswamy Iyer; Punit Marathe; Zheng Yang; Yurong Lai; Rodrigues Ad

Although the metabolism and disposition of diclofenac (DF) has been studied extensively, information regarding the plasma levels of its acyl-β-d-glucuronide (DF-AG), a major metabolite, in human subjects is limited. Therefore, DF-AG concentrations were determined in plasma (acidified blood derived) of six healthy volunteers following a single oral DF dose (50 mg). Levels of DF-AG in plasma were high, as reflected by a DF-AG/DF ratio of 0.62 ± 0.21 (Cmax mean ± S.D.) and 0.84 ± 0.21 (area under the concentration-time curve mean ± S.D.). Both DF and DF-AG were also studied as substrates of different human drug transporters in vitro. DF was identified as a substrate of organic anion transporter (OAT) 2 only (Km = 46.8 µM). In contrast, DF-AG was identified as a substrate of numerous OATs (Km = 8.6, 60.2, 103.9, and 112 µM for OAT2, OAT1, OAT4, and OAT3, respectively), two organic anion–transporting polypeptides (OATP1B1, Km = 34 µM; OATP2B1, Km = 105 µM), breast cancer resistance protein (Km = 152 µM), and two multidrug resistance proteins (MRP2, Km = 145 µM; MRP3, Km = 196 µM). It is concluded that the disposition of DF-AG, once formed, can be mediated by various candidate transporters known to be expressed in the kidney (basolateral, OAT1, OAT2, and OAT3; apical, MRP2, BCRP, and OAT4) and liver (canalicular, MRP2 and BCRP; basolateral, OATP1B1, OATP2B1, OAT2, and MRP3). DF-AG is unstable in plasma and undergoes conversion to parent DF. Therefore, caution is warranted when assessing renal and hepatic transporter-mediated drug-drug interactions with DF and DF-AG.


Xenobiotica | 2011

Effect of interferon-α2b on the expression of various drug-metabolizing enzymes and transporters in co-cultures of freshly prepared human primary hepatocytes

Cliff Chen; Yong-Hae Han; Zheng Yang; A. David Rodrigues

The purpose of this study was to assess the impact of interferon-α2b (IFN-α2b) on the expression of various drug-metabolizing enzymes and transporters in freshly prepared co-cultures (parenchymal and non-parenchymal cells) of human primary hepatocytes. At therapeutically relevant concentrations (from 1000 to 3000 IU/mL), IFN-α2b up-regulated STAT1 (signal transducer and activator of transcription factor 1) mRNA expression. Conversely, three cytochrome P450s (CYP1A2, CYP2B6, CYP2E1), a UDP-glucuronosyltransferase (UGT2B7), a sulphotransferase (SULT1A1) and organic anion transporter (OAT2) were significantly down-regulated (~50%; P < 0.05). Western blot analysis of CYP1A2, UGT2B7 and OAT2 protein supported the mRNA data. Two peroxisome proliferator activator receptor alpha (PPARα)-controlled genes (pyruvate dehydrogenase kinase 4 and adipose differentiation-related protein), CYP3A4 and multidrug resistance-associated protein 2 were significantly up-regulated (up to 223%; P < 0.05). On the other hand, SULT2A1, carboxylesterase 2, organic anion transporting peptide (OATP1B1, OATP1B3, OATP2B1), organic cation transporter 1, P-glycoprotein and breast cancer resistance protein mRNA expression was not significantly affected. Western blot analysis of CYP3A4 supported the mRNA data also. The present results demonstrated complex interactions between IFN-α2b and hepatocytes and the observed down-regulation of CYP1A2, OAT2 and UGT2B7 is consistent with reports of drug interactions between IFN-α2b and drugs such as theophylline, clozapine and gemfibrozil.


Archives of Pharmacal Research | 2007

Peptide transporter substrate identification during permeability screening in drug discovery : Comparison of transfected MDCK-hPepT1 cells to Caco-2 cells

Praveen Balimane; Saeho Chong; Karishma Patel; Yong Quan; Julita Timoszyk; Yong-Hae Han; Bonnie Wang; Balvinder S. Vig; Teresa N. Faria

The purpose of this study was to investigate the utility of stably transfected MDCK-hPepT1 cells for identifying peptide transporter substrates in early drug discovery and compare the characteristics of this cell line with Caco-2 cells. MDCK-hPepT1, MDCK-mock, and Caco-2 cells grown to confluence on 24-well Transwell were used for this study. Expression levels of different transporter proteins (PepT1, PepT2, P-gp) in these cell lines were assessed by qRT-PCR. Permeability studies were conducted in parallel in all the cells with a diverse set of peptide substrates using the optimized experimental condition: 100 μM, apical pH 6.0, basolateral pH 7.4, 2 hr incubation at 37°C. Permeability studies were also conducted with classical P-gp substrates (tested in bi-directional mode) and paracellularly absorbed probes to investigate the differences between the cell lines. As expected, MDCK-hPepT1 cells express significantly higher level of PepT1 mRNA compared to both Caco-2 and MDCK-mock cells. Efflux transporter, P-gp, was expressed adequately in all the cell lines. Permeability studies demonstrated that classical peptide substrates had significantly higher permeability in stably transfected MDCK-hPepT1 cells compared to MDCK-mock and Caco-2 cells. The transfected MDCK-hPepT1 cells were qualitatively similar to Caco-2 cells with respect to functional P-gp efflux activity and paracellular pore activity. Stably transfected MDCK-hPepT1 cells have been demonstrated as a viable alternative to Caco-2 cells for estimating the human absorption potential of peptide transporter substrates. These cells behave similar to Caco-2 cells with regards to P-gp efflux and paracellular pore activity but demonstrate greater predictability of absorption values for classical peptide substrates (for which Caco-2 cells under-estimate oral absorption).


Journal of Biomolecular Screening | 2013

Development of Novel, 384-Well High-Throughput Assay Panels for Human Drug Transporters Drug Interaction and Safety Assessment in Support of Discovery Research

Huaping Tang; Ding Ren Shen; Yong-Hae Han; Yan Kong; Praveen Balimane; Anthony Marino; Mian Gao; Sophie Wu; Dianlin Xie; Matthew G. Soars; Jonathan O’Connell; A. David Rodrigues; Litao Zhang; Mary Ellen Cvijic

Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.


Archive | 2010

Anticipating and Minimizing Drug Interactions in a Drug Discovery and Development Setting: An Industrial Perspective

Ragini Vuppugalla; Sean Kim; Tatyana Zvyaga; Yong-Hae Han; Praveen Balimane; Punit Marathe; A. David Rodrigues

In the current age of polypharmacy, it is increasingly likely that a new chemical entity (NCE) will be prescribed with a second drug that demonstrates a narrow therapeutic index. As a result, one has to consider interactions involving drug-metabolizing enzymes and transporters. NCEs with drug–drug interaction (DDI) liabilities may have limited marketing potential, as they may alter the pharmacokinetic profile of a co-administered drug resulting in either unwanted side effects or loss of pharmacological activity. Within the current competitive landscape, therefore, it is highly desirable to select candidates with reduced potential for DDIs and most pharmaceutical companies spend considerable resources screening and triaging NCEs for induction and inhibition of drug-metabolizing enzymes (e.g., cytochromes P450) and transporters. Thus, the purpose of the present chapter is to provide an industrial perspective on how the existing strategies are utilized to enable the selection of suitable candidates with reduced DDI risk. Additional emphasis will be placed on in vitro tools and the challenges associated with the prediction of DDIs prior to first in man.

Collaboration


Dive into the Yong-Hae Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge