Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Praveen Balimane is active.

Publication


Featured researches published by Praveen Balimane.


Journal of Pharmacological and Toxicological Methods | 2000

Current methodologies used for evaluation of intestinal permeability and absorption.

Praveen Balimane; Saeho Chong; Richard A. Morrison

This review article will focus on the various techniques that are currently employed by drug discovery scientists in evaluating permeability/absorption of drug candidates during the drug candidate selection process. Various preclinical methodologies are available; each having advantages and disadvantages, but it is the judicious use of these techniques that can help identify drug candidates that will be well absorbed in humans. It is well recognized that the human intestinal permeability cannot be accurately predicted based on a single methodology (in vitro: tissue/cell culture, in situ, or in vivo).


Aaps Journal | 2006

Current industrial practices of assessing permeability and P-glycoprotein interaction

Praveen Balimane; Yong-Hae Han; Saeho Chong

Combination of the in vitro models that are high throughput but less predictive and the in vivo models that are low throughput but more predictive is used effectively to evaluate the intestinal permeability and transport characteristics of a large number of drug candidates during lead selection and lead optimization processes. Parallel artificial membrane permeability assay and Caco-2 cells are the most frequently used in vitro models to assess intestinal permeability. The popularity of these models stems from their potential for high throughput, cost effectiveness, and adequate predictability of absorption potential in humans. However, several caveats associated with these models (eg, poor predictability for transporter-mediated and paracellularly absorbed compounds, significant nonspecific binding to cells/devices leading to poor recovery, variability associated with experimental factors) need to be considered carefully to realize their full potential. P-glycoprotein, among other pharmaceutically relevant transporters, has been well demonstrated to be the major determinant of drug disposition. The review article presents an objective analysis of the permeability and transporter models currently being used in the pharmaceutical industry and could help guide the discovery scientists in implementing these models in an optimal fashion.


Clinical Pharmacokinectics | 2007

Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol

Hongjian Zhang; Donghui Cui; Bonnie Wang; Yong-Hae Han; Praveen Balimane; Zheng Yang; Michael Sinz; A. David Rodrigues

Abstract17α-Ethinylestradiol (EE) is widely used as the estrogenic component of oral contraceptives (OC). In vitro and in vivo metabolism studies indicate that EE is extensively metabolised, primarily via intestinal sulfation and hepatic oxidation, glucuronidation and sulfation. Cytochrome P450 (CYP)3A4-mediated EE 2-hydroxylation is the major pathway of oxidative metabolism of EE. For some time it has been known that inducers of drug-metabolising enzymes (such as the CYP3A4 inducer rifampicin [rifampin]) can lead to breakthrough bleeding and contraceptive failure. Conversely, inhibitors of drug-metabolising enzymes can give rise to elevated EE plasma concentrations and increased risks of vascular disease and hypertension. In vitro studies have also shown that EE inhibits a number of human CYP enzymes, such as CYP2C19, CYP3A4 and CYP2B6. Consequently, there are numerous reports in the literature describing EE-containing OC formulations as perpetrators of pharmacokinetic drug interactions. Because EE may participate in multiple pharmacokinetic drug interactions as either a victim or perpetrator, pharmaceutical companies routinely conduct clinical drug interaction studies with EE-containing OCs when evaluating new chemical entities in development. It is therefore critical to understand the mechanisms underlying these drug interactions. Such an understanding can enable the interpretation of clinical data and lead to a greater appreciation of the profile of the drug by physicians, clinicians and regulators. This article summarises what is known of the drug-metabolising enzymes and transporters governing the metabolism, disposition and excretion of EE. An effort is made to relate this information to known clinical drug-drug interactions. The inhibition and induction of drug-metabolising enzymes by EE is also reviewed.


Pharmaceutical Research | 2008

A Novel Design of Artificial Membrane for Improving the PAMPA Model

Xiaoxi Chen; Anthony Murawski; Karishma Patel; Charles L. Crespi; Praveen Balimane

PurposeSince the first demonstration of PAMPA, the artificial membrane has been traditionally prepared by impregnating a porous filter with a solution of lipid mixture. While the lipid solution-based method is simple and seems to provide good predictability for many compounds, it is challenged by several shortcomings including reproducibility, stability, mass retention and the incorrect prediction of a group of highly permeable compounds including caffeine and antipyrine. Here we present the validation of a novel artificial membrane formed by constructing a lipid/oil/lipid tri-layer in the porous filter.MethodsPermeability values obtained from traditional and new artificial membrane were compared for their correlation with Caco-2 and human absorption values. Mass retention, stability and organic solvent compatibility of the new artificial membrane were studied.ResultsThe new artificial membrane correctly predicts the permeability of the traditionally under-predicted compounds and improves the correlation with Caco-2 and human absorption values. Furthermore, the new artificial membrane reduces the mass retention of compounds that are highly retained by the traditional artificial membrane. The new artificial membrane is also found to be robust enough to sustain long term storage and has good compatibility with organic solvents.ConclusionsThe new artificial membrane provides an improved PAMPA model.


Drug Metabolism and Disposition | 2013

Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria

Joe Bentz; Michael P. O'Connor; Dallas Bednarczyk; J. Coleman; C A Lee; Johan Palm; Y.A. Pak; Elke S. Perloff; Eric L. Reyner; Praveen Balimane; M. Brännström; Xiaoyan Chu; Christoph Funk; A. Guo; I. Hanna; Krisztina Herédi-Szabó; Kathleen M. Hillgren; Libin Li; E. Hollnack-Pusch; Masoud Jamei; Xuena Lin; A.K. Mason; Sibylle Neuhoff; Aarti Patel; Lalitha Podila; Emile Plise; Ganesh Rajaraman; Laurent Salphati; E. Sands; Mitchell E. Taub

A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.


Journal of Medicinal Chemistry | 2009

Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development.

Mark D. Wittman; Joan M. Carboni; Zheng Yang; Francis Y. Lee; Melissa Antman; Ricardo M. Attar; Praveen Balimane; Chiehying Chang; Cliff Chen; Lorell Discenza; David B. Frennesson; Marco M. Gottardis; Ann Greer; Warren Hurlburt; Walter Lewis Johnson; David R. Langley; Aixin Li; Jianqing Li; Peiying Liu; Harold Mastalerz; Arvind Mathur; Krista Menard; Karishma Patel; John S. Sack; Xiaopeng Sang; Mark G. Saulnier; Daniel J. Smith; Kevin Stefanski; George L. Trainor; Upender Velaparthi

This report describes the biological activity, characterization, and SAR leading to 9d (BMS-754807) a small molecule IGF-1R kinase inhibitor in clinical development.


Journal of Medicinal Chemistry | 2010

Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521).

Scott H. Watterson; Zili Xiao; Dharmpal S. Dodd; David R. Tortolani; Wayne Vaccaro; Dominique Potin; Michele Launay; Dawn K. Stetsko; Stacey Skala; Patric M. Davis; Deborah Lee; Xiaoxia Yang; Kim W. McIntyre; Praveen Balimane; Karishma Patel; Zheng Yang; Punit Marathe; Pathanjali Kadiyala; Andrew J. Tebben; Steven Sheriff; ChiehYing Y. Chang; Theresa Ziemba; Huiping Zhang; Bang-Chi Chen; Albert J. DelMonte; Nelly Aranibar; Murray McKinnon; Joel C. Barrish; Suzanne J. Suchard; T. G. Murali Dhar

Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.


Journal of Medicinal Chemistry | 2008

Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinase with broad spectrum in vivo antitumor activity.

Upender Velaparthi; Mark D. Wittman; Peiying Liu; Joan M. Carboni; Francis Y. Lee; Ricardo M. Attar; Praveen Balimane; Wendy Clarke; Michael Sinz; Warren Hurlburt; Karishma Patel; Lorell Discenza; Sean Kim; Marco M. Gottardis; Ann Greer; Aixin Li; Mark G. Saulnier; Zheng Yang; Kurt Zimmermann; George L. Trainor; Dolatrai M. Vyas

We previously reported that 1 (BMS-536924), a benzimidazole inhibitor of the insulin-like growth factor-1 receptor, had demonstrated in vivo antitumor activity. This lead compound was found to have potent CYP3A4 inhibition, CYP3A4 induction mediated by PXR transactivation, poor aqueous solubility, and high plasma protein binding. Herein we disclose the evolution of this chemotype to address these issues. This effort led to 10 (BMS-695735), which exhibits improved ADME properties, a low risk for drug-drug interactions, and in vivo efficacy in multiple xenograft models.


Drug Metabolism and Disposition | 2013

Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactionss

Harma Ellens; Shibing Deng; Joann Coleman; Joe Bentz; Mitchell E. Taub; Isabelle Ragueneau-Majlessi; Sophie P. Chung; Krisztina Herédi-Szabó; Sibylle Neuhoff; Johan Palm; Praveen Balimane; Lei Zhang; Masoud Jamei; Imad Hanna; Michael P. O'Connor; Dallas Bednarczyk; Malin Forsgard; Xiaoyan Chu; Christoph Funk; Ailan Guo; Kathleen M. Hillgren; Libin Li; Anne Y. Pak; Elke S. Perloff; Ganesh Rajaraman; Laurent Salphati; Jan Shiang Taur; Dietmar Weitz; Heleen M. Wortelboer; Cindy Q. Xia

In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits P-glycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when the maximum concentration of inhibitor at steady state divided by IC50 ([I1]/IC50) is ≥0.1 or concentration of inhibitor based on highest approved dose dissolved in 250 ml divide by IC50 ([I2]/IC50) is ≥10. In this article, refined criteria are presented, determined by receiver operating characteristic analysis, using IC50 values generated by 23 laboratories. P-gp probe substrates were digoxin for polarized cell-lines and N-methyl quinidine or vinblastine for P-gp overexpressed vesicles. Inhibition of probe substrate transport was evaluated using 15 known P-gp inhibitors. Importantly, the criteria derived in this article take into account variability in IC50 values. Moreover, they are statistically derived based on the highest degree of accuracy in predicting true positive and true negative digoxin DDI results. The refined criteria of [I1]/IC50 ≥ 0.03 and [I2]/IC50 ≥ 45 and FDA criteria were applied to a test set of 101 in vitro-in vivo digoxin DDI pairs collated from the literature. The number of false negatives (none predicted but DDI observed) were similar, 10 and 12%, whereas the number of false positives (DDI predicted but not observed) substantially decreased from 51 to 40%, relative to the FDA criteria. On the basis of estimated overall variability in IC50 values, a theoretical 95% confidence interval calculation was developed for single laboratory IC50 values, translating into a range of [I1]/IC50 and [I2]/IC50 values. The extent by which this range falls above the criteria is a measure of risk associated with the decision, attributable to variability in IC50 values.


Bioorganic & Medicinal Chemistry Letters | 2008

Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors.

Kurt Zimmermann; Mark D. Wittman; Mark G. Saulnier; Upender Velaparthi; David R. Langley; Xiaopeng Sang; David B. Frennesson; Joan M. Carboni; Aixin Li; Ann Greer; Marco M. Gottardis; Ricardo M. Attar; Zheng Yang; Praveen Balimane; Lorell Discenza; Dolatrai M. Vyas

3-(Benzimidazol-2-yl)-pyridine-2-one-based ATP competitive inhibitors of Insulin-like Growth Factor 1 Kinase (IGF-IR) were optimized for reduced Cyp3A4 inhibition and improved oral exposure. The use of malonate as methyl anion synthon via S(N)Ar reaction and double decarboxylation under mild conditions is demonstrated.

Collaboration


Dive into the Praveen Balimane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aixin Li

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge