Yong-hua Hu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yong-hua Hu.
Vaccine | 2009
Huan-ran Wang; Yong-hua Hu; Wei-wei Zhang; Li Sun
Ferric uptake regulator (Fur) is a global transcription regulator that is ubiquitous to Gram-negative bacteria and regulates diverse biological processes, including iron uptake, cellular metabolism, stress response, and production of virulence determinants. As a result, for many pathogenic bacteria, Fur plays a crucial role in the course of infection and disease development. In this study, the fur gene was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased Japanese flounder cultured in a local farm. TSS Fur can partially complement the defective phenotype of an Escherichia coli fur mutant. A TSS fur null mutant, TFM, was constructed. Compared to TSS, TFM exhibits reduced growth ability, aberrant production of outer membrane proteins, decreased resistance against host serum bactericidal activity, impaired ability to disseminate in host blood and tissues, and drastic attenuation in overall bacterial virulence in a Japanese flounder infection model. When used as a live vaccine administered via the injection, immersion, and oral routes, TFM affords high levels of protection upon Japanese flounder against not only P. fluorescens infection but also Aeromonas hydrophila infection. Furthermore, a plasmid, pJAQ, was constructed, which expresses the coding element of the Vibrio harveyi antigen AgaV-DegQ. TFM harboring pJAQ can secret AgaV-DegQ into the extracellular milieu. Vaccination of Japanese flounder with live TFM/pJAQ elicited strong immunoprotection against both V. harveyi and A. hydrophila infections.
Vaccine | 2009
Xu-dong Jiao; Min Zhang; Yong-hua Hu; Li Sun
Edwardsiella tarda is an opportunistic pathogen that can infect humans, animal, and fish. Two E. tarda antigens, Eta6 and FliC, which are homologues to an ecotin precursor and the FliC flagellin, respectively, were identified by in vivo-induced antigen technology from a pathogenic E. tarda strain isolated from diseased fish. When used as a subunit vaccine, purified recombinant Eta6 was moderately protective against lethal challenge of E. tarda in a Japanese flounder model, whereas purified recombinant FliC showed no apparent immunoprotectivity. Similarly, DNA vaccines based on eta6 and fliC in the form of plasmids pEta6 and pFliC induced, respectively, moderate and marginal protection against E. tarda infection. To improve the vaccine efficacy of eta6, a chimeric DNA vaccine, pCE6, was constructed, which encodes Eta6 fused in-frame to FliC. pCE6 was found to induce significantly higher level of protection than pEta6. Likewise, another chimeric DNA vaccine, pCE18, which expresses FliC fused to a previously identified E. tarda antigen Et18, elicited significantly stronger protective immunity than the DNA vaccine based on et18 alone. Fish immunized with pEta6 and pCE6 produced specific serum antibodies and exhibited significantly enhanced expression of the genes encoding elements that are involved in both innate and adaptive immune responses. Furthermore, the induction magnitudes of most of these genes were significantly higher in pCE6-vaccinated fish than in pEta6-vaccinated fish.
Vaccine | 2010
Xu-dong Jiao; Shuang Cheng; Yong-hua Hu; Li Sun
Edwardsiella tarda is a severe aquaculture pathogen that can infect many different fish species cultured worldwide. Et49 is a major E. tarda antigen with weak immunoprotective potential. In this study, using Et49 as an example vaccine, the adjuvanticity of Freunds incomplete adjuvant (FIA), aluminum hydroxide, and aluminum phosphate adjuvant were evaluated in a Japanese flounder model. The results showed that the presence of FIA, aluminum hydroxide, and aluminum phosphate adjuvant increased the relative percent of survival of Et49-vaccinated fish by 47%, 19%, and 35%, respectively. Fish vaccinated with FIA-adjuvanted Et49 exhibited longer persistence of vaccine at the injection site and more severe intra-abdominal lesions than fish vaccinated with aluminum-adjuvanted Et49. Both aluminum adjuvants and, to a lesser degree, FIA augmented the production of specific serum antibodies, which reached the highest levels at 6 and 7 weeks post-vaccination. Passive immunization of Japanese flounder with sera from fish vaccinated with aluminum- and FIA-adjuvanted Et49 induced no protection against lethal E. tarda challenge. Examination of the transcription profile of immune-related genes showed that vaccination with aluminum-adjuvanted Et49 significantly enhanced the expression of the genes that are associated mainly with humoral immunity, whereas vaccination with FIA-adjuvanted Et49 induced the expression of a much broader spectrum of genes that are likely to be involved in humoral and innate cellular immunity. These results provide new insights to the action mechanisms of FIA and aluminum adjuvants in Japanese flounder and may be useful for the selection of adjuvant for vaccine formulations intended for Japanese flounder.
Vaccine | 2010
Shuang Cheng; Yong-hua Hu; Xu-dong Jiao; Li Sun
Streptococcus iniae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of farmed fish species. In the summer of 2006, an epidemic broke out in a fish farm in north China, and examination of moribund fish (Japanese flounder) identified the possible etiological agent of the outbreak as a strain named SF1, which exhibited apparent virulence in a Japanese flounder infection model and conforms to the description of S. iniae by 16S rRNA sequence analysis and API 20 Strep test. Biochemical and random amplified polymorphic DNA analyses indicated that SF1 is of the serotype I. A putative iron-binding protein, Sip11, was identified from SF1 using a previously established molecular trap that selects exported proteins. Recombinant Sip11 was purified from Escherichia coli and found to be protective against SF1 infection when used as an injection vaccine administered intraperitoneally into Japanese flounder. To improve the vaccine potential of Sip11, an E. coli strain was constructed, which expresses and secrets recombinant Sip11 covalently linked to a carrier protein in the form of a chimera. Vaccination of Japanese flounder with live Sip11-secreting E. coli afforded complete protection upon the fish following lethal SF1 challenge. These results indicate that Sip11, especially when delivered by a live bacterial carrier, is an effective vaccine candidate against SF1 infection.
Veterinary Microbiology | 2009
Wei-wei Zhang; Yong-hua Hu; Hua-lei Wang; Li Sun
Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic P. fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence.
Vaccine | 2010
Chun-sheng Liu; Yun Sun; Yong-hua Hu; Li Sun
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class IIalpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity.
Vaccine | 2010
Yun Sun; Yong-hua Hu; Chun-sheng Liu; Li Sun
Streptococcus iniae is a severe aquaculture pathogen that can also infect humans and animal. A putative secretory antigen, Sia10, was identified from a pathogenic S. iniae strain by in vivo-induced antigen technology. Using turbot as an animal model, the immunoprotective effect of Sia10 was examined as a DNA vaccine in the form of plasmid pSia10, which expresses sia10 under the cytomegalovirus immediate-early promoter. In fish vaccinated with pSia10, transcription of sia10 was detected in muscle, liver, spleen, and kidney at 7, 14, 21, 28, 35, 42, and 49 days post-vaccination. In addition, production of Sia10 protein was also detected in the muscle tissues of pSia10-vaccinated fish. Fish vaccinated with pSia10 exhibited a relative percent survival (RPS) of 73.9% and 92.3%, respectively, when challenged with high and low doses (producing a cumulative mortality of 92% and 52%, respectively, in the control groups) of S. iniae. Immunological and transcriptional analyses showed that vaccination with pSia10 (i) induced much stronger chemiluminescence response and significantly higher levels of nitric oxide production and acid phosphatase activity in head kidney macrophages; (ii) caused the production of specific serum antibodies, which afforded apparent immunoprotection when transferred passively into naïve fish; and (iii) upregulated the expression of the genes encoding proteins that are possibly involved in both innate and adaptive immune responses. Taken together, these results indicated that pSia10 is an effective vaccine candidate and may be used in the control of S. iniae infection in aquaculture.
Applied and Environmental Microbiology | 2009
Yong-hua Hu; Chun-sheng Liu; Jin-hui Hou; Li Sun
ABSTRACT A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50°C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Fish & Shellfish Immunology | 2015
Jian Zhang; Yong-xin Li; Yong-hua Hu
Interferon regulatory factors (IRFs) act as transcription mediators in virus-, bacteria-, and interferon (IFN)-induced signaling pathways and play diverse functions in antimicrobial defense, immune modulation, hematopoietic differentiation, and cell apoptosis. In this study, we described for the first time eleven IRFs (IRF1, IRF1L, IRF2X1, IRF3, IRF4a, IRF4b, IRF5, IRF6, IRF7, IRF8, and IRF9) from half-smooth tongue sole (Cynoglossus semilaevis) and examined their tissue distributions and expression patterns under different conditions. The deduced protein sequences of these IRFs (except IRF1) share high identities (71.8-86.6%) with other corresponding IRFs in other teleosts, whereas the sequence identity of IRF1 with the corresponding IRF1 in other teleosts is only 58.1%. A conserved N-terminal DNA binding domain (DBD), which is characterized by a winged type helix-loop-helix motif with four to six tryptophan repeats, is present in all IRFs. Another conserved IRF associated domain (IAD), which mediates the interactions in the C-terminal part of the protein, is present in all IRFs except IRF1 and IRF2X1, which instead contain the IAD2 domain. Several special domains also were found, including a serine-rich domain (SRD) in IRF3, IRF4a, IRF4b, and IRF7; a proline-rich domain (PRD) in IRF9; nuclear localization signals (NLSs) in IRF5, IRF8, and IRF9; and a virus activated domain (VAD) in IRF5. Quantitative real time RT-PCR (qRT-PCR) analysis showed that expression of all IRFs occurred in multiple tissues. IRF1, IRF2X1, IRF4a, IRF5, IRF7, and IRF8 exhibited relatively high levels of expression in immune organs, whereas the other five IRFs displayed high levels of expression in non-immune organs. Infection with extracellular and intracellular bacterial pathogens and virus upregulated the expression of IRFs in a manner that depended on tissue type, pathogen, and infection stage. Specifically, IRF1 and IRF2X1 were highly induced by bacterial and viral pathogens; IRF1L and IRF6 responded mainly to extracellular and intracellular bacterial pathogens; IRF3, IRF5, IRF7, IRF8, and IRF9 were markedly induced by intracellular bacterial pathogen and virus; IRF4a and IRF4b were mainly induced by virus and intracellular bacterial pathogen respectively. These results indicate that the IRFs of C. semilaevis can be categorized into several groups which exhibit different expression patterns in response to the infection of different microbial pathogens. These results provide new insights into the roles of teleost IRFs in antimicrobial immunity.
Fish & Shellfish Immunology | 2012
Min Zhang; Yong-hua Hu; Zhi-zhong Xiao; Yun Sun; Li Sun
Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture.