Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-zhong Xiao is active.

Publication


Featured researches published by Zhi-zhong Xiao.


PLOS ONE | 2012

Cynoglossus semilaevis ISG15: A Secreted Cytokine-Like Protein That Stimulates Antiviral Immune Response in a LRGG Motif-Dependent Manner

Wei Wang; Min Zhang; Zhi-zhong Xiao; Li Sun

ISG15 is an ubiquitin-like protein that is induced rapidly by interferon stimulation. Like ubiquitin, ISG15 forms covalent conjugates with its target proteins in a process called ISGylation, which in mammals is known to play a role in antiviral immunity. In contrast to mammalian ISG15, the function of teleost ISG15 is unclear. In this study, we identified and analyzed the function of an ISG15 homologue, CsISG15, from tongue sole (Cynoglossus semilaevis). CsISG15 is composed of 162 residues and possesses two tandem ubiquitin-like domains and the highly conserved LRGG motif found in all known ISG15. Expression of CsISG15 occurred in a wide range of tissues and was upregulated in kidney and spleen by viral and bacterial infection. In vitro study with primary head kidney (HK) lymphocytes showed that megalocytivirus infection caused induction of CsISG15 expression and extracellular release of CsISG15 protein. Purified recombinant CsISG15 (rCsISG15) activated HK macrophages and enhanced the expression of immune genes in HK lymphocytes, both these effects, however, were significantly reduced when the conserved LRGG sequence was mutated to LAAG. Further study showed that the presence of rCsISG15 during megalocytivirus infection of HK lymphocytes reduced intracellular viral load, whereas antibody blocking of CsISG15 enhanced viral infection. Likewise, interference with CsISG15 expression by RNAi promoted viral infection. Taken together, these results indicate that CsISG15, a teleost ISG15, promotes antiviral immune response and that, unlike mammalian ISG15, CsISG15 exerts its immunoregulatory effect in the form of an unconjugated extracellular cytokine. In addition, these results also suggest a role for the LRGG motif other than that in protein conjugation.


Ecotoxicology and Environmental Safety | 2009

Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major.

Liang Cao; Wei Huang; Xiujuan Shan; Zhi-zhong Xiao; Qiyao Wang; Shuozeng Dou

At 18 degrees C and 33 psu, 24 and 48 h LC(50) values of cadmium (Cd) for red sea bream Pagrus major embryos were 9.8 and 6.6 mgl(-1), respectively, while 24, 48, 72, and 96 h LC(50) values for larvae were 18.9, 16.2, 8.0, and 5.6 mgl(-1), respectively, indicating that embryos were more sensitive to Cd toxicity than larvae. Cd concentrations at > or =0.8 mgl(-1) led to low hatchability (0-90% in > or =0.8 mgl(-1) solutions vs. 97-100% in lower ones), delay in time to hatch, high mortality (38-100% vs. 1-10%), morphological abnormality (42-100% vs. 1-10%), reduced length (3.55-3.60 vs. 3.71-3.72 mm) in the embryos and larvae. They were Cd concentration dependent and potential biological significant endpoints for assessing the risk of Cd to aquatic organisms. Heart beat and yolk absorption of the larvae were significantly inhibited at some high concentrations but they were not as sensitive as other endpoints to Cd exposure.


Fish & Shellfish Immunology | 2012

Construction and analysis of experimental DNA vaccines against megalocytivirus

Min Zhang; Yong-hua Hu; Zhi-zhong Xiao; Yun Sun; Li Sun

Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture.


Fish & Shellfish Immunology | 2013

SmCCL19, a CC chemokine of turbot Scophthalmus maximus, induces leukocyte trafficking and promotes anti-viral and anti-bacterial defense

Cheng Chen; Yong-hua Hu; Zhi-zhong Xiao; Li Sun

Chemokines are classified into several different subfamilies, of which CC chemokines constitute the largest subfamily in teleost. The prominent structural characteristic of CC chemokines is the presence of an Asp-Cys-Cys-Leu (DCCL) motif. To date, cDNA sequences of several CC chemokines have been identified in turbot (Scophthalmus maximus), however, the activity and function of these putative chemokines remain unknown. In this study, we examined the biological effect of the turbot CC chemokine SmCCL19, which has been previously reported as KC70 and shown to be regulated in expression by bacterial infection. To facilitate functional analysis, recombinant SmCCL19 (rSmCCL19) and a mutant form of SmCCL19, SmCCL19M, that bears serine substitutions at the two cysteine residues of the DCCL motif were purified from Escherichia coli. Chemotactic analysis showed that rSmCCL19 induced migration of head kidney leukocytes in a dose-dependent manner, whereas rSmCCL19M caused no apparent cellular migration. To examine the in vivo effect of rSmCCL19, turbot were administered with rSmCCL19 or rSmCCL19M before being inoculated with viral and bacterial pathogens. Subsequent tissue infection analysis showed that the viral and bacterial loads in rSmCCL19-adminsitered fish were significantly reduced, whereas the pathogen loads in rSmCCL19M-adminsitered fish were largely comparable to those in the control fish. Consistent with these observations, significant inductions of immune relevant genes were observed in rSmCCL19-adminsitered fish but not in rSmCCL19M-adminsitered fish. Taken together, these results indicate that SmCCL19 recruits leukocytes and augments host immune defense in a manner that depends on the conserved DCCL motif.


Developmental and Comparative Immunology | 2013

First characterization of a teleost Epstein-Barr virus-induced gene 3 (EBI3) reveals a regulatory effect of EBI3 on the innate immune response of peripheral blood leukocytes

Mo-fei Li; Bo-guang Sun; Zhi-zhong Xiao; Li Sun

Epstein-Barr virus-induced gene 3 (EBI3) encodes a protein that in mammals is known to be a subunit of interleukin (IL)-27 and IL-35, both which regulate cytokine production and inflammatory response. To date, no studies on fish EBI3 have been documented. In this work, we report the identification of an EBI3 homologue, CsEBI3, from tongue sole (Cynoglossus semilaevis) and analysis of its expression and biological effect. CsEBI3 is composed of 245 amino acid residues and possesses a Fibronectin type 3 (FN3) domain that is preserved in lower and higher vertebrates. Expression of CsEBI3 was detected in a wide range of tissues, in particular those of immune relevant organs, and upregulated in a time-dependent manner by experimental challenge with bacterial and viral pathogens. Bacterial infection of peripheral blood leukocytes (PBL) enhanced CsEBI3 expression and caused extracellular secretion of CsEBI3. Purified recombinant CsEBI3 (rCsEBI3) stimulated the respiratory burst activity of PBL and upregulated the expression of IL-1β, IL-8, Myd88, interferon-induced gene 15, CD28, and chemokines. In contrast, rCsEBI3M, a mutant CsEBI3 that lacks the FN3 domain failed to activate PBL and induced much weaker expression of the immune genes. Treatment of PBL with rCsEBI3, but not with the mutant rCsEBI3M, enhanced cellular resistance against bacterial invasion, whereas antibody blocking of CsEBI3 on PBL significantly reduced cellular resistance against bacterial infection. Taken together, these results indicate for the first time that a teleost EBI3 possesses immunoregulatory property in a manner that is dependent on the conserved FN3 domain, and that CsEBI3 is involved in the innate immune defense of PBL against microbial pathogens.


Journal of Proteomics | 2013

Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential.

Jian Zhang; Yong-hua Hu; Zhi-zhong Xiao; Li Sun

UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.


Developmental and Comparative Immunology | 2012

Overexpression of NF-κB inhibitor alpha in Cynoglossus semilaevis impairs pathogen-induced immune response

Min Zhang; Zhi-zhong Xiao; Li Sun

IκBα is a member of the NF-κB inhibitor family that inhibits NF-κB activity by sequestering NF-κB in an inactive form in the cytosol. Unlike mammalian IκBα, which has been extensively studied, very little is known about the function of fish IκBα. In this study, we identified and analyzed an IκBα homologue, CsIκBα from half-smooth tongue sole (Cynoglossus semilaevis), a marine flatfish with important economic value. The deduced amino acid sequence of CsIκBα contains 308 residues and shares 58-82% overall sequence identities with the IκBα of a number of teleosts. In silico analysis identified in CsIκBα conserved domains that in mammals are known to be involved in phosphorylation, ubiquitination, and degradation of IκBα. Quantitative real time RT-PCR detected constitutive expression of CsIκBα in gut, spleen, liver, gill, heart, brain, muscle, and kidney. Experimental challenge with a bacterial pathogen-induced significant inductions of CsIκBα expression in head and trunk kidney, which, however, were transient and much lower in magnitude than that of interleukin-1β. To examine the effect of unregulated overexpression of CsIκBα in a live fish model, tongue sole were administered via intramuscular injection with plasmid pCNCsIkBa, which constitutively expresses CsIκBα. PCR, RT-PCR, and immunohistochemistry analysis showed that pCNCsIkBa was able to translocate to internal tissues, where transcription and translation of the recombinant CsIκBα took place. Compared to control fish, fish administered with pCNCsIkBa were impaired in the ability to block bacterial dissemination and survival in kidney and exhibited significantly reduced expression of multiple immune genes. These results suggest the possible existence in tongue sole of a NF-κB-IκBα signaling pathway that is negatively regulated by CsIκBα and required for effective defense against bacterial infection.


Veterinary Immunology and Immunopathology | 2013

The megalocytivirus-induced protein CsMig1 enhances Cynoglossus semilaevis resistance against viral infection

Wei Wang; Zhi-zhong Xiao; Li Sun

Half-smooth tongue sole (Cynoglossus semilaevis) is an important economic fish species cultured in northern China. In this study, we identified and analyzed the expression and function of a megalocytivirus-induced gene, CsMig1, from tongue sole. The deduced amino acid sequence of CsMig1 is composed of 507 residues and contains no conserved domains. Blast analysis identified no close homologues of CsMig1. CsMig1 shares moderate sequence similarities in the N-terminal region with the Gig1 (i.e., grass carp hemorrhagic virus-induced gene) homologues of several teleost species. Quantitative real time RT-PCR analysis showed that constitutive CsMig1 expression occurred, in increasing order, in heart, spleen, muscle, kidney, liver, gill, and gut. Experimental infection with the viral pathogen megalocytivirus upregulated CsMig1 expression in kidney, spleen, and liver in time-dependent manners. Treatment of head kidney lymphocytes with the culture supernatant of megalocytivirus-stimulated cells significantly enhanced CsMig1 expression. When head kidney lymphocytes were transfected with the plasmid that constitutively expresses CsMig1, the cells exhibited significantly increased ability to resist megalocytivirus infection. Taken together, these results indicate that CsMig1 is a virus- and, possibly, interferon-induced novel immune factor that functions in the antiviral immunity of tongue sole.


Fish & Shellfish Immunology | 2013

Nuclear factor 45 of half smooth tongue sole Cynoglossus semilaevis: Gene structure, expression profile, and immunoregulatory property

Heng Chi; Zhi-zhong Xiao; Li Sun

Nuclear factor 45 (NF45) is a component of the protein complex called nuclear factor of activated T-cells (NFAT), which in mammals regulates interleukin (IL)-2 expression. To date very little is known about fish NF45. In this study, we identified a NF45 (named CsNF45) from half smooth tongue sole Cynoglossus semilaevis and examined its gene organization, expression profile, and regulatory function. We found that CsNF45 is composed of 387 residues and shares 90.3%-97.9% overall sequence identities with the NF45 of human and teleosts. Genetic analysis showed that the genomic sequence of the ORF region of CsNF45 consists of 14 exons and 13 introns. Constitutive expression of CsNF45 occurred in multiple tissues including gill, muscle, brain, heart, liver, head kidney, spleen, and gut. Experimental infection with viral and bacterial pathogens upregulated the expression of CsNF45 in head kidney and spleen in a time-dependent manner. Transient transfection analysis showed that CsNF45 was localized in the nucleus and able to stimulate the activity of mouse IL-2 promoter. These results indicate that CsNF45 possesses immunoregulatory property and is possibly involved in host immune defense against bacterial and viral infection.


Aquaculture | 2008

Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles

Xiujuan Shan; Zhi-zhong Xiao; Wei Huang; Shuozeng Dou

Collaboration


Dive into the Zhi-zhong Xiao's collaboration.

Top Co-Authors

Avatar

Li Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shihong Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuozeng Dou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Huang

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar

Xiujuan Shan

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong-hua Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. Y. Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Cao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge