Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yong-Seon Zhang.
Korean Journal of Soil Science and Fertilizer | 2013
Seung-Been Lee; Hyen-Chung Chun; Hyun-Jun Cho; Byung-Keun Hyun; Kwan-Cheol Song; Yong-Seon Zhang; Yeon-Kyu Sonn; Chan-Won Park
In Soil Taxonomy system, anthropogenic soils are still classified as Entisols since the International Classification Committee for Anthropogenic Soils is in the process of classifying anthropogenic soils as new orders. In reality, it is difficult to characterize anthropogenic soils because Soil Taxonomy (ST) system does not distinguish between natural and anthropogenic Entisols. On the other hand, World Reference Base for soil resources (WRB) considers human impacts on soils and contains an independent category of anthropogenic soils, which makes easier to understand anthropogenic soil characteristics than Soil Taxonomy system. A remodeled paddy field (Gasan) was selected to classify by ST and WRB. Soil samples were taken to analyze chemical and physical properties. Based on the results of the analyses, the ST system classified Gasan as coarse loamy, mixed, mesic, Aquic Udorthents while the WRB did as Stagnic Urbic Technosols (Oxyaquic, Arenic). As a conclusion, the WRB classification information of the anthropogenic provides more detail characteristics of the anthropogenic soils.
Korean Journal of Soil Science and Fertilizer | 2015
Kang-Ho Jung; Yeon-Kyu Sonn; Kyoung-hwa Han; Yong-Seon Zhang
This research was performed to test the hypothesis that the optimal fertilization rate for lettuce is various with soil moisture conditions. The experiment was conducted under a rainfall-intercepted facility in Suwon, South Korea from 2002 to 2003. Soil was irrigated at 30, 50, or 80 kPa of soil moisture tension at 15 cm soil depth in 2002 spring and fall and 20, 30, 50, or 80 kPa in 2003 spring. Fertilization was performed with four levels in spring for both years: none, 0.5, 1.0, and 1.5 times of the recommended N, P, and K fertilization rate. The irrigation amount increased with decreased irrigation starting point as soil moisture tension. The maximum yield was found at the lowest soil moisture tension in spring while irrigation at 50 kPa resulted in the greatest yield in fall. The yield responses of lettuce to fertilization rates were various with soil moisture condition. In spring, maximum yield was found at 1.0 or 1.5 times of the recommended fertilization rate at 20, 30, and 50 kPa irrigation while 0.5 or 1.0 times of fertilization rate resulted in the maximum yield in fall. Especially for 80 kPa irrigation in 2003 spring, yield was decreased by fertilization. It suggested that the optimum fertilization rate for lettuce is affected by soil moisture condition and that lower fertilization rate should be suggested when soil is managed in drier condition.
Korean Journal of Soil Science and Fertilizer | 2014
Yong-Seon Zhang; Yeon-Kyu Sonn; Yong-Hee Moon; Kang-Ho Jung; Hye-Rae Cho; Kyeong-Hwa Han
Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granitegneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and eldspar, respectively.
Korean Journal of Soil Science and Fertilizer | 2013
Yong-Seon Zhang; Gye-Jun Lee; Jeong-Tae Lee; Yeon-Kyu Sonn; Hong-Bae Yun; Myung-Sook Kim
This study was conducted to investigate decomposition of livestock manure in soils cultivated with Chinese cabbage along an alitude gradient. The experiments were conducted in Kangreung (17 m above sea level), Bongpyeong (430 m above sea level), and Daekwanryeong (800 m above the sea level) in order to assess the decomposition rate and accumulations of livestock manures depending on different altitudes. During chinese cabbage cultivation, the decomposition ratios of organic matter derived form livestock manure expressed as % of the initial organic matter content were 42∼48% for Kangreung, 26∼29% for Bongpyeong and 10∼14% for Daekwanryeong. Changes in air temperature with altitude might be a main factor affecting manure decomposition rates.
Korean Journal of Environmental Agriculture | 2007
Yong-Seon Zhang; Gye-Jun Lee; Jin Ho Joo; Jeong-Tae Lee; Jae-Hoon Ahn; Chol-Soo Park
Soil erosion is one of the most serious problems in alpine upland in Korea. Soil fertility has continuously decreased due to serious soil erosion. To increase soil fertility, new sources of organic matter should be inputted. Therefore, the objectives of this research were to select winter cover crop as new sources of organic matter and to investigate the effect of winter cover crop on soil property changes, major crop productivity (Chinese cabbage, potato) production in highland, and disease occurrence with different cropping systems. Among 17 candidates for winter coverage crop, rye was most suitable due to its soil covering rate, and over-wintering rate. The optimum sowing period for rye ranged from late August to late September. Soil porosity and organic matter content increased with rye cultivation. Rye cultivation during winter increased amounts of crop (both Chinese cabbage and potato) productivity up to 8%. There was little difference on amount of crop productivity depending on cropping systems such as monoculture (Chinese cabbage or potato) and Chinese cabbage-potato rotation.
Korean Journal of Soil Science and Fertilizer | 2011
Jeong-Tae Lee; Gye-Jun Lee; Jong-Soo Ryu; Suk-Hoo Park; Kyung-Hwa Han; Yong-Seon Zhang
There is relatively high vulnerability of soil erosion in slope highland agriculture due to a reclamation of mountain as well as low surface covering in early summer season with high rainfall intensity time. The aim of this study was to evaluate various surface covering methods for reducing soil loss in highland radish cultivation in highland. The experiment was conducted in 17% sloped lysimeter () with 8 treatments including covering with cut rye, sod culture of rye, Ligularia fischeri var. spiciformis Nakai, Arachniodes aristata Tindale, Aster koraiensis Nakai, Festuca myuros L. and mulching with black polyethylene film, and runoff water, eroded soil and radish growth were investigated. Surface covering with sod culture and plant residue, especially cut rye treatment, had lower runoff water than non-covering, whereas black polyethylene film mulching had the reverse. The amount of eroded soil was also lowest in cut rye treatment, , and increased in the order of rye sod culture, Ligularia fischeri var. spiciformis Nakai, Aster koraiensis Nakai, Festuca myuros L., Arachniodes aristata Tindale, black polyethylene film, and non-covering, . The results showed that surface covering with sod culture or plant residue could be effective for reducing runoff water and soil erosion in the radish field, significantly in cut rye treatment. On the other hand, in sod culture of rye, Aster koraiensis Nakai and Ligularia fischeri var. spiciformis Nakai, radish yields were lower than in the non-covering. Unlike this, covering with cut rye, sod culture of Festuca myuros L. had similar radish yield to the non-covering radish yield. In conclusion, covering with cut rye and sod culture of Festuca myuros L. were beneficial for reduction of soil loss without decreasing in radish yield in highland sloped fields.
Korean Journal of Soil Science and Fertilizer | 2011
Myung-Sook Kim; Yoo-Hak Kim; Byung-Keun Hyun; Jae E. Yang; Yong-Seon Zhang; Hong-Bae Yun; Yeon-Kyu Sonn; Ye-Jin Lee; Sang-Keun Ha
The changes of available silicate (Avail. ) contents in paddy soils (sandy loam) were assessed from data of the 41 years fertilization plots in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (O), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPK+C), inorganic fertilizer plus silicate fertilizer as a soil amendment (NPK+S), inorganic fertilizer plus rice straw compost and silicate fertilizer (NPK+CS) and inorganic fertilizer plus rice straw compost, silicate fertilizer and lime (NPK+CSL). Available silicate contents in NPK+S, NPK+CS and NPK in surface soil reached at the highest content () after 41 years and then levelled off. Available silicate contents in subsurface soil (25~30 cm) were higher in NPK+C and NPK+S treatments than those in other treatments. Continuous application of silicate fertilizer affected significantly on the levels of available silicate in surface and subsurface soils. Silicate uptake of top rice was more increased by 98% in NPK+CS and NPK+CSL over NPK. Grain yield also increased by 37~47% in NPK+CS and NPK+CSL as compared to NPK. The combined applications of inorganic fertilizers with silicate as a soil amendment are recommended as the best fertilization practice for fertilizer use efficiency, enhancement of soil fertility status in the continuous rice cropping system in Korea.
Korean Journal of Soil Science and Fertilizer | 2011
Jeong-Tae Lee; Gye-Jun Lee; Jong-Soo Ryu; Seon-Woong Hwang; Suk-Hoo Park; Yong-Seon Zhang; Yeong-Sang Jeong
Strip tiller equipment was developed to reduce soil erosion in the slope land for highland agricultural area. The equipment consisted of 4 rows strip tillage device and fertilizer applicator. The field was tilled in 10 cm width and in 10 cm depth by the equipment, of which tilled surface was 16.7% of full-width tillage. The working time and fuel consumption of the equipment were 3.8 hours ha -1 and 24.4 L ha -1 respectively, which were 59% and 74% less than those of the conventional tillage. Fertilizer efficiency of the equipment in cultivation of Chinese cabbage was 1.7, 1.6 and 1.5 times higher in nitrate, phosphorous and potassium respectively, than conventional tillage. When the equipment was used after covering of rye residue, the quantity of runoff was 49~67% lower than the conventional tillage. And the quantity of soil loss were 1.3 and 0.2 Mg ha -1 at right after and 30 days after planting of Chinese cabbage respectively, while 11.5 and 4.1 Mg ha -1 in conventional tillage. In conclusion, the strip tillage equipment developed in this study can be applicable to slope land, so that soil loss of 90% can be reduced.
Korean Journal of Soil Science and Fertilizer | 2011
Ghulam Sarwar; Muhammad Ibrahim; Mukkram Ali Tahir; Yasir Iftikhar; Muhammad Sajjad Haider; Noor-us-Sabah; Kyung-Hwa Han; Sang-Keun Ha; Yong-Seon Zhang
Salt-affected soils are present in Pakistan in significant quantity. This experiment was conducted to assess the effectiveness of compost for reclamation and compare its efficiency with gypsum. For this purpose, various combinations of compost and gypsum were used to evaluate their efficacy for reclamation. A saline-sodic field having pH s 8.90, EC e 5.94 dS m ?1 and SAR 34.5 (mmol L ?1 ) 1/2 , SP (saturation percentage) 42.29% and texture Sandy clay loam, gypsum requirement (GR) 8.75 Mg ha ?1 was selected for this study. The experiment comprised of seven treatments (control, gypsum alone, compost alone and different combinations of compost and gypsum based on soil gypsum requirements). Inorganic and organic amendments (gypsum and compost) were applied to a saline sodic soil. Rice and wheat crops were grown. Soil samples were collected from each treatment after the harvest of both crops and analyzed for chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) and fertility status (organic matter, available phosphorus and potassium contents) of soil. Results of this study revealed that compost and gypsum improved chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) of saline sodic soil to the desired levels. Similarly, all parameters of soil fertility like organic matter, available phosphorus and potassium contents were built up with the application of compost and gypsum.
Korean Journal of Soil Science and Fertilizer | 2016
Sang-Jae Kang; Jeonghun Jang; Nayun Park; Jun-Hong Park; Seyeong Choi; Man Park; Chang-Hee Lee; Dong-Hoon Lee; Yong-Seon Zhang
This study deals with the distribution of the clay minerals separated from clay fractions of ranch pastures in Korea and their chemical and mineralogical properties. Crystalline phases of the clay minerals were identified by powder X-ray diffraction (XRD) pattern and FT-IR spectra, and their relative chemical compositions were also analyzed by X-ray flourescence spectrometry (XRF). Primary minerals consisted mainly of quartz and mica and chlorite and kaolinite along with a trace of swelling micas were identified as secondary clay minerals. However, the relative content of these clay minerals was different with the locations, which led to significant effects on physical and chemical properties of soils like inorganic elemental composition. In particular, SiO₂ content was higher in Gochang ranch pasture than in other ranch pasture. Infrared (IR) spectra did not indicate any significant differences in organic functional groups among the locations. This study clearly showed that ranch pastures had different relative content of clay minerals and chemical properties depending on the location and consequently that those properties are worthy to be taken into account for soil amendment.