Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongchun Zuo is active.

Publication


Featured researches published by Yongchun Zuo.


PLOS ONE | 2012

iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties.

Wei Chen; Hao Lin; Pengmian Feng; Chen Ding; Yongchun Zuo; Kuo-Chen Chou

Nucleosome positioning has important roles in key cellular processes. Although intensive efforts have been made in this area, the rules defining nucleosome positioning is still elusive and debated. In this study, we carried out a systematic comparison among the profiles of twelve DNA physicochemical features between the nucleosomal and linker sequences in the Saccharomyces cerevisiae genome. We found that nucleosomal sequences have some position-specific physicochemical features, which can be used for in-depth studying nucleosomes. Meanwhile, a new predictor, called iNuc-PhysChem, was developed for identification of nucleosomal sequences by incorporating these physicochemical properties into a 1788-D (dimensional) feature vector, which was further reduced to a 884-D vector via the IFS (incremental feature selection) procedure to optimize the feature set. It was observed by a cross-validation test on a benchmark dataset that the overall success rate achieved by iNuc-PhysChem was over 96% in identifying nucleosomal or linker sequences. As a web-server, iNuc-PhysChem is freely accessible to the public at http://lin.uestc.edu.cn/server/iNuc-PhysChem. For the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented just for the integrity in developing the predictor. Meanwhile, for those who prefer to run predictions in their own computers, the predictors code can be easily downloaded from the web-server. It is anticipated that iNuc-PhysChem may become a useful high throughput tool for both basic research and drug design.


Bioinformatics | 2013

PreDNA: accurate prediction of DNA-binding sites in proteins by integrating sequence and geometric structure information

Tao Li; Qian-Zhong Li; Shuai Liu; Guo-Liang Fan; Yongchun Zuo; Yong Peng

MOTIVATION Protein-DNA interactions often take part in various crucial processes, which are essential for cellular function. The identification of DNA-binding sites in proteins is important for understanding the molecular mechanisms of protein-DNA interaction. Thus, we have developed an improved method to predict DNA-binding sites by integrating structural alignment algorithm and support vector machine-based methods. RESULTS Evaluated on a new non-redundant protein set with 224 chains, the method has 80.7% sensitivity and 82.9% specificity in the 5-fold cross-validation test. In addition, it predicts DNA-binding sites with 85.1% sensitivity and 85.3% specificity when tested on a dataset with 62 protein-DNA complexes. Compared with a recently published method, BindN+, our method predicts DNA-binding sites with a 7% better area under the receiver operating characteristic curve value when tested on the same dataset. Many important problems in cell biology require the dense non-linear interactions between functional modules be considered. Thus, our prediction method will be useful in detecting such complex interactions.


Genomics | 2011

Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility.

Yongchun Zuo; Qian-Zhong Li

Accurate identification of core promoters is important for gaining more insight about the understanding of the eukaryotic transcription regulation. In this study, the authors focused on the biologically realistic promoter prediction of plant genomes. By analyzing the correlative conservation, GC-compositional bias and specific structural patterns of TATA and TATA-less promoters in PlantPromDB, a hybrid multi-feature approach based on support vector machine (SVM) for predicting the two types of promoters were developed by integrating local word content, GC-Skew and DNA geometric flexibility. Compared with the TSSP-TCM program on the same test dataset, better prediction results were obtained. Especially for the TATA-less promoter, the accuracy is 10% higher than the result of TSSP-TCM program. The good performance of the hybrid promoters and the experimental data also indicate that our method has the ability to locate the promoter region of the plant genome.


Amino Acids | 2010

Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids.

Yongchun Zuo; Qian-Zhong Li

Due to the complexity of Plasmodium falciparumis genome, predicting secretory proteins of P. falciparum is more difficult than other species. In this study, based on the measure of diversity definition, a new K-nearest neighbor method, K-minimum increment of diversity (K-MID), is introduced to predict secretory proteins. The prediction performance of the K-MID by using amino acids composition as the only input vector achieves 88.89% accuracy with 0.78 Mathew’s correlation coefficient (MCC). Further, the several reduced amino acids alphabets are applied to predict secretory proteins and the results show that the prediction results are improved to 90.67% accuracy with 0.83 MCC by using the 169 dipeptide compositions of the reduced amino acids alphabets obtained from Protein Blocks method.


BioMed Research International | 2014

Predicting the Types of J-Proteins Using Clustered Amino Acids

Pengmian Feng; Hao Lin; Wei Chen; Yongchun Zuo

J-proteins are molecular chaperones and present in a wide variety of organisms from prokaryote to eukaryote. Based on their domain organizations, J-proteins can be classified into 4 types, that is, Type I, Type II, Type III, and Type IV. Different types of J-proteins play distinct roles in influencing cancer properties and cell death. Thus, reliably annotating the types of J-proteins is essential to better understand their molecular functions. In the present work, a support vector machine based method was developed to identify the types of J-proteins using the tripeptide composition of reduced amino acid alphabet. In the jackknife cross-validation, the maximum overall accuracy of 94% was achieved on a stringent benchmark dataset. We also analyzed the amino acid compositions by using analysis of variance and found the distinct distributions of amino acids in each family of the J-proteins. To enhance the value of the practical applications of the proposed model, an online web server was developed and can be freely accessed.


Amino Acids | 2013

A similarity distance of diversity measure for discriminating mesophilic and thermophilic proteins

Yongchun Zuo; Wei Chen; Guo-Liang Fan; Qian-Zhong Li

The successful prediction of thermophilic proteins is useful for designing stable enzymes that are functional at high temperature. We have used the increment of diversity (ID), a novel amino acid composition-based similarity distance, in a 2-class K-nearest neighbor classifier to classify thermophilic and mesophilic proteins. And the KNN-ID classifier was successfully developed to predict the thermophilic proteins. Instead of extracting features from protein sequences as done previously, our approach was based on a diversity measure of symbol sequences. The similarity distance between each pair of protein sequences was first calculated to quantitatively measure the similarity level of one given sequence and the other. The query protein is then determined using the K-nearest neighbor algorithm. Comparisons with multiple recently published methods showed that the KNN-ID proposed in this study outperforms the other methods. The improved predictive performance indicated it is a simple and effective classifier for discriminating thermophilic and mesophilic proteins. At last, the influence of protein length and protein identity on prediction accuracy was discussed further. The prediction model and dataset used in this article can be freely downloaded from http://wlxy.imu.edu.cn/college/biostation/fuwu/KNN-ID/index.htm.


Biochemical and Biophysical Research Communications | 2014

Characterization of essential genes by topological properties in the perturbation sensitivity network

Lei Yang; Jizhe Wang; Huiping Wang; Yingli Lv; Yongchun Zuo; Wei Jiang

Genes that are indispensable for survival are called essential genes. In recent years, the analysis of essential genes has become extremely important for understanding the way a cell functions. With the advent of large-scale gene expression profiling technologies, it is now possible to profile transcriptional changes in the entire genome of Saccharomyces cerevisiae. Notwithstanding the accumulation of gene expression profiling in recent years, only a few studies have used these data to construct the network for S. cerevisiae. In this paper, based on the transcriptional profiling of the S. cerevisiae genome in hundreds of different gene disruptions, the perturbation sensitivity (PS) network is constructed. A scale-free topology with node degree following a power-law distribution is shown in the PS network. Twelve topological properties are used to investigate the characteristics of essential and non-essential genes in the PS network. Most of the properties are found to be statistically discriminative between essential and non-essential genes. In addition, the F-score is used to estimate the essentiality of each property, and the core number demonstrates the highest F-score among all properties.


Genomics | 2013

The effect of regions flanking target site on siRNA potency

Li Liu; Qian-Zhong Li; Hao Lin; Yongchun Zuo

For a successful RNA interference (RNAi) experiment, selecting the small interference RNA (siRNA) candidates which maximize the knock down effect of the given gene is the critical step. Although various computational approaches have been attempted, the design of efficient siRNA candidates is far from satisfactory yet. In this study, we proposed a novel feature selection algorithm of combined random forest and support vector machine to predict active siRNAs. Using a publically available dataset, we demonstrated that the predictive accuracy would be markedly improved when the context sequence features outside the target site were included. The Pearson correlation coefficient for regression is as high as 0.721, compared to 0.671, 0.668, 0.680, and 0.645, for Biopredsi, i-score, ThermoComposition21 and DSIR, respectively. It revealed that siRNA-target interaction requires appropriate sequence context not only in the target site but also in a broad region flanking the target site.


BMC Genomics | 2014

Irregular transcriptome reprogramming probably causes thec developmental failure of embryos produced by interspecies somatic cell nuclear transfer between the Przewalski’s gazelle and the bovine

Yongchun Zuo; Yu Gao; Guanghua Su; Chunling Bai; Zhuying Wei; Kun Liu; Qian-Zhong Li; Shorgan Bou; Guangpeng Li

BackgroundInterspecies somatic cell nuclear transfer (iSCNT) has been regarded as a potential alternative for rescuing highly endangered species and can be used as a model for studying nuclear–cytoplasmic interactions. However, iSCNT embryos often fail to produce viable offspring. The alterations in normal molecular mechanisms contributing to extremely poor development are for the most part unknown.ResultsPrzewalski’s gazelle–bovine iSCNT embryos (PBNT) were produced by transferring Przewalski’s gazelle fibroblast nuclei into enucleated bovine oocytes. The percentages of PBNT embryos that developed to morula/blastocyst stages were extremely low even with the use of various treatments that included different SCNT protocols and treatment of embryos with small molecules. Transcriptional microarray analyses of the cloned embryos showed that the upregulation of reprogramming-associated genes in bovine–bovine SCNT (BBNT) embryos was significantly higher than those observed in PBNT embryos (1527:643). In all, 139 transcripts related to various transcription regulation factors (TFs) were unsuccessfully activated in the iSCNT embryos. Maternal degradation profiles showed that 1515 genes were uniquely downregulated in the BBNT embryos, while 343 genes were downregulated in the PBNT embryos. Incompatibilities between mitochondrial DNA (mtDNA) and nuclear DNA revealed that the TOMM (translocase of outer mitochondrial membrane)/TIMM (translocase of inner mitochondrial membrane) complex-associated genes in BBNT embryos had the highest expression levels, while the PBNT embryos exhibited much lower expression rates.ConclusionsImproper degradation of maternal transcripts, incomplete activation of TFs and abnormal expression of genes associated with mitochondrial function in PBNT embryos likely contributed to incomplete reprogramming of the donor cell nuclei and therefore led to the developmental failure of these cloned embryos.


Oncotarget | 2016

Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis.

Yongchun Zuo; Guanghua Su; Shanshan Wang; Lei Yang; Mingzhi Liao; Zhuying Wei; Chunling Bai; Guangpeng Li

Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM).

Collaboration


Dive into the Yongchun Zuo's collaboration.

Top Co-Authors

Avatar

Qian-Zhong Li

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Lei Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yingli Lv

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Guangpeng Li

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Shiyuan Wang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunling Bai

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Guanghua Su

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Xiaowen Chen

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Guo-Liang Fan

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Hao Lin

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge