Yonghai Song
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yonghai Song.
Journal of Microscopy | 2005
Zhe Liu; Zhuang Li; Hualan Zhou; Gang Wei; Yonghai Song; Lipeng Wang
We used different methods to modify a mica surface with 3‐aminopropyltriethoxysilane (APTES), and then used it as substrate to immobilize DNA for atomic force microscopy (AFM) observation. The evaporation method and solution modifying method were investigated and evaluated. The solution modifying method was found to be relatively simple and effective. Using an APTES solution‐modified mica surface, DNA immobilization appeared more reproducible and it could be imaged in liquid. The mixed solution of APTES and DNA was dropped directly onto the mica surface for AFM imaging. We found that DNA can condense in APTES water solutions. Toroids, rods and intermediate structures of condensation were captured by AFM.
Biochemical and Biophysical Research Communications | 2002
Jianping Zheng; Zhuang Li; Aiguo Wu; Hualan Zhou; Hanying Bai; Yonghai Song
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when epsilon is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.
Polymer | 2001
Giovanna Costa; D Meli; Yonghai Song; Antonio Turturro; Barbara Valenti; Maila Castellano; Luciano Falqui
In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested.
Chemistry and Physics of Lipids | 2003
Li Wang; Yonghai Song; Xiaojun Han; Bailin Zhang; Erkang Wang
The growth of cationic lipid dioctadecyldimethylammonium bromide (DODAB) toward bilayer lipid membrane (BLM) by solution spreading on cleaved mica surface was studied by atomic force microscopy (AFM). Bilayer of DODAB was formed by exposing mica to a solution of DODAB in chloroform and subsequently immersing into potassium chloride solution for film developing. AFM studies showed that at the initial stage of the growth, the adsorbed molecules exhibited the small fractal-like aggregates. These aggregates grew up and expanded laterally into larger patches with time and experienced from monolayer to bilayer, finally a close-packed bilayer film (5.4+/-0.2 nm) was approached. AFM results of the film growth process indicated a growth mechanism of nucleation, growth and coalescence of dense submonolayer, it revealed the direct information about the film morphology and confirmed that solution spreading was an effective technique to prepare a cationic bilayer in a short time.
Applied Surface Science | 2002
Li Wang; Yonghai Song; Aiguo Wu; Zhuang Li; Bailin Zhang; Erkang Wang
Tapping mode atomic force microscopy (AFM) was applied to study the adsorption behavior of methanol on mica, highly oriented pyrolytic graphite (HOPG) and indium-tin oxide (ITO) coated glass substrates. On mica and HOPG substrates surfaces, the thin films of methanol with bilayer and multilayer were observed, respectively. The formation of irregular islands of methanol was also found on HOPG surface. On ITO surface only aggregates and clusters of methanol molecules were formed. The influence of sample preparation on the adsorption was discussed.
Journal of Physical Chemistry B | 2008
Cunlan Guo; Yonghai Song; Li Wang; Lanlan Sun; Yujing Sun; Chongyang Peng; Zhelin Liu; Tao Yang; Zhuang Li
The assembly and disassembly of RecA-DNA nucleoprotein filaments on double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) are important steps for homologous recombination and DNA repair. The assembly and disassembly of the nucleoprotein filaments are sensitive to the reaction conditions. In this work, we investigated different morphologies of the formed nucleoprotein filaments at low temperature under different solution conditions by atomic force microscopy (AFM). We found that low temperature and long keeping time could induce the incomplete disassembly of the formed nucleoprotein filaments. In addition, when the formed filaments were kept at -20 degrees C for 20 h with 1,4-dithiothreitol (DTT), the integrated filaments disassembled. It was similar to the case under the same condition without anything added. However, when glycerol was used as a substitute for DTT, there was no obvious disassembly at the same condition. Oppositely, when the formed filaments were kept at 4 degrees C for 20 h, the disassembly with additional DTT was not as obvious as the case at -20 degrees C for 20 h, whereas the case with additional glycerol disassembled. The experiments indicated the effect of cold denaturation on the interaction of DNA and RecA. Meanwhile, the study of these phenomena can supply guidelines for the property and stability of RecA as well as the relevant roles of influencing factors to RecA and DNA in further theoretical studies.
Sensors and Actuators B-chemical | 2006
Yonghai Song; Li Wang; Chunbo Ren; Guoyi Zhu; Zhuang Li
Journal of Physical Chemistry C | 2008
Lanlan Sun; Yonghai Song; Li Wang; Cunlan Guo; Yujing Sun; Zhelin Liu; Zhuang Li
Journal of Physical Chemistry B | 2005
Gang Wei; Hualan Zhou; Zhiguo Liu; Yonghai Song; Li Wang; Lanlan Sun; Zhuang Li
Journal of Physical Chemistry B | 2005
Gang Wei; Li Wang; Zhiguo Liu; Yonghai Song; Lanlan Sun; Tao Yang; Zhuang Li