Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongmei Yin is active.

Publication


Featured researches published by Yongmei Yin.


Analytical Chemistry | 2012

Protein Detection Based on Small Molecule-Linked DNA

Ya Cao; Sha Zhu; Jiacui Yu; Xuejun Zhu; Yongmei Yin; Genxi Li

Based on small molecule-linked DNA and the nicking endonuclease-assisted amplification (NEA) strategy, a novel electrochemical method for protein detection is proposed in this work. Specifically, the small molecule-linked DNA (probe 1) can be protected from exonuclease-catalyzed digestion upon binding to the protein target of the small molecule, so the DNA strand may hybridize with another DNA strand (probe 2) that is previously immobilized onto an electrode surface. Consequently, the NEA process is triggered, resulting in continuous removal of the DNA strands from the electrode surface, and the blocking effect against the electrochemical species [Fe(CN)(6)](3-/4-) becomes increasingly lower; thus, increased electrochemical waves can be achieved. Because the whole process is activated by the target protein, an electrochemical method for protein quantification is developed. Taking folate receptor (FR) as an example in this work, we can determine the protein in a linear range from 0.3 to 15 ng/mL with a detection limit of 0.19 ng/mL. Furthermore, because the method can be used for the assay of FR in serum samples and for the detection of other proteins such as streptavidin by simply changing the small molecule moiety of the DNA probes, this novel method is expected to have great potential applications in the future.


Biosensors and Bioelectronics | 2012

A “signal-on” electrochemical aptasensor for simultaneous detection of two tumor markers

Jing Zhao; Xiaolin He; Bing Bo; Xinjian Liu; Yongmei Yin; Genxi Li

In this paper, we report a signal-on electrochemical aptasensor for simultaneous determination of two tumor markers MUC1 and VEGF(165), by using a ferrocene-labeled aptamer-complementary DNA (cDNA) as probe. Since the cDNA immobilized on an electrode surface can hybridize with both MUC1 aptamer and VEGF(165) aptamer to form a long double strand with ferrocene far away from the electrode surface, the probe cannot give electrochemical signal. Nevertheless, the presence of the two tumor markers will inhibit the hybridization of cDNA with the aptamers, thus the distance between ferrocene and the electrode is changed, and a signal-on electrochemical method to detect two tumor markers is developed. Experimental results show that the electrochemical signal increases with the addition of either tumor markers, but the biggest electrochemical signal can only be obtained when both tumor markers are present. Therefore, the proposed electrochemical aptasensor can not only detect the two markers but also distinguish their co-existence. It may also display high selectivity and sensitivity towards the detection of the tumor markers, so it might have potential clinical application in the future.


Analytical and Bioanalytical Chemistry | 2011

Functionalization of platinum nanoparticles for electrochemical detection of nitrite

Peng Miao; Min Shen; Limin Ning; Guifang Chen; Yongmei Yin

In this work, a novel electrochemical method for nitrite detection by using functionalized platinum nanoparticles (PtNPs) is proposed. Firstly, a gold electrode is immobilized with 4-(2-aminoethyl)benzenamine. Then, PtNPs are modified with 5-[1, 2]dithiolan-3-yl-pentanoic acid [2-(naphthalene-1-ylamino)-ethyl]amide (DPAN). Consequently, in the presence of nitrite ions, Griess reaction occurs between 4-(2-aminoethyl)benzenamine on the electrode and DPAN on PtNPs, thus PtNPs are localized onto the electrode surface. So, PtNPs-electrocatalyzed reduction of H2O2 can be achieved to correlate the electrochemical signal with the concentration of nitrite ions. The linear concentration range can be as wide as 10–1,000xa0μM, while the detection limit is as low as 5xa0μM. The proposed method has been also successfully applied to the detection of nitrite with the local lake water, and the result is well consistent with that obtained by UV-visible spectrophotometric method. So, this method has potential use for monitoring nitrite in drinking water supplies in the future.


Analytical Chemistry | 2013

A General Way to Assay Protein by Coupling Peptide with Signal Reporter via Supermolecule Formation

Hao Li; Haona Xie; Ya Cao; Xiaorong Ding; Yongmei Yin; Genxi Li

Protein-binding peptide is recently recognized as an effective artificial affinity reagent for protein assays. However, its application is hampered by the limited choices of available signal readout methods. Herein, we report a general electrochemical signal readout method for protein-binding peptides exploiting the host-guest chemistry of cucurbituril. Via the formation of supermolecules among cucurbituril, electrochemical reporter, and the peptide, a protein-binding peptide can be noncovalently coupled with the electrochemical reporter. To assay the target protein, the protein-binding peptides are first self-assembled in the sensing layer, and after the capturing of the target protein, a portion of the peptides become protein-bound. The protein-free peptides are then coupled with the electrochemical reporter to yield a signal readout inversely proportional to the amount of the captured target proteins. Since the only requirement of supermolecule formation is the incorporation of aromatic amino acids in the peptide sequence, this strategy is universally applicable to many protein-binding peptides. The generality and target specificity of the proposed method are successfully demonstrated in the assays of two kinds of target proteins: tumor necrosis factor-α and amyloid β 1-42 soluble oligomer, respectively. The feasibility of our method is also tested in the monitoring of tumor necrosis factor-α secretion activity of HL-60 cells. These results indicate that our method can have great use in protein detection in the future.


Biosensors and Bioelectronics | 2015

Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification.

Hongxia Chen; Jiangjiang Zhang; Yanmin Gao; Siyu Liu; Kwangnak Koh; Xiaoli Zhu; Yongmei Yin

This paper reports a novel approach for the simple assays of cell apoptosis using electrochemical technique. In this study, caspase-3 activity, which was detected with differential plus voltammetry (DPV) as an alternative to conventional spectrometry approach, was employed as an indicator of cell apoptosis and, while an acetylated peptide Ac-GGHDEVDHGGGC was used as the blocked substrate. In the presence of casepase-3, the hydrolysis of blocked peptide might release active amine groups, which could covalently conjugate with graphene oxide. Therefore, electroactive methylene blue molecules could be further attached to the electrode surface through π-π stacking and electrostatic interactions. Using this proposed new method, a very sensitive detection of caspase-3 could be achieved with a low detection limit of 0.06 pg/mL, and a new method for sensitive detection of cell apoptosis was developed. Moreover, we have successfully used this new method to detect cell apoptosis with human pulmonary carcinoma A549 cell after apoptosis inducing.


International Journal of Molecular Sciences | 2010

Colorimetric immunoassay for detection of tumor markers.

Yongmei Yin; Ya Cao; Yuanyuan Xu; Genxi Li

Tumor markers are substances, usually proteins, produced by the body in response to cancer growth, or by the cancer tissue itself. They can be detected in blood, urine, or tissue samples, and the discovery and detection of tumor markers may provide earlier diagnosis of cancer and improved therapeutic intervention. Colorimetric immunoassays for tumor marker detection have attracted considerable attention, due to their simplicity and high efficiency. The traditionally used colorimetric immunoassays for the detection of tumor markers are based on enzyme-linked immunosorbent assays, and the great achievement of nanotechnology has further opened opportunities for the development of such kind of immunoassays. This paper will summarize recent advances in the field of colorimetric immunoassays for detecting tumor markers, which is aimed to provide an overview in this field, as well as experimental guidance for the learner.


Biosensors and Bioelectronics | 2015

Colorimetric assay for protein detection based on "nano-pumpkin" induced aggregation of peptide-decorated gold nanoparticles.

Luming Wei; Xiaoying Wang; Chao Li; Xiaoxi Li; Yongmei Yin; Genxi Li

Small peptide can be used as an effective biological recognition element and provide an alternative tool for protein detection. However, the development of peptide-based detecting strategy still remains elusive due to the difficulty of signal transduction. Herein, we report a peptide-based colorimetric strategy for the detection of disease biomarker by using vascular endothelial growth factor receptor 1 (Flt-1) as an example. In this strategy, N-terminal aromatic residue-containing peptide modified gold nanoparticles (GNPs) can form bulky aggregate by the introduction of cucurbit[8]uril (CB[8]) that can selectively accommodate two N-terminal aromatic residue of peptides simultaneously regardless of their sequences. However, in the presence of Flt-1, the peptide can specifically bind to the protein molecule and the N-terminal aromatic residue will be occupied, resulting in little aggregation of GNPs. By taking advantage of the highly affinitive peptide and efficiency cross-linking effect of CB[8] to GNPs, colorimetric assay for protein detection can be achieved with a detection limit of 0.2 nM, which is comparable with traditional methods. The feasibility of our method has also been demonstrated in spiked serum sample, indicating potential application in the future.


Biosensors and Bioelectronics | 2013

Ultra-sensitive detection of Ag+ ions based on Ag+-assisted isothermal exponential degradation reaction

Jing Zhao; Qi Fan; Sha Zhu; Aiping Duan; Yongmei Yin; Genxi Li

Ag(+) ions are greatly toxic to a lot of algae, fungi, viruses and bacteria, which can also induce harmful side-effects to environments and human health. Herein we report an ultra-sensitive method for the selective detection of Ag(+) ions with electrochemical technique based on Ag(+)-assisted isothermal exponential degradation reaction. In the presence of Ag(+), mismatched trigger DNA can transiently bind to template DNA immobilized on an electrode surface through the formation of C-Ag(+)-C base pair, which then initiates the isothermal exponential degradation reaction. As a result, the mismatched trigger DNA may melt off the cleaved template DNA to trigger rounds of elongation and cutting. After the cyclic degradation reactions, removal of the template DNA immobilized on the electrode surface can be efficiently monitored by using electrochemical technique to show the status of the electrode surface, which can be then used to determine the presence of Ag(+). Further studies reveal that the proposed method can be ultra-sensitive to detect Ag(+) at a picomolar level. The selectivity of the detection can also be satisfactory, thus the proposed method for the Ag(+) ions detection may be potentially useful in the future.


ACS Applied Materials & Interfaces | 2014

Combining Peptide and DNA for Protein Assay: CRIP1 Detection for Breast Cancer Staging

Haona Xie; Hao Li; Yue Huang; Xiaoying Wang; Yongmei Yin; Genxi Li

In this work, a novel method for a protein assay is proposed which uses the specific protein-binding peptide of the target protein and sequence-specific DNA to interact with the target as the capture and detection probe, respectively. Meanwhile, since the DNA sequence can be coupled with gold nanoparticles to amplify the signal readout, a sensitive and easily operated method for protein assay is developed. We have also employed a transcription factor named as cysteine-rich intestinal protein 1 (CRIP1), which has been identified as an ideal biomarker for staging of breast cancer, as the model protein for this study. With the proposed method, CRIP1 can be determined in a linear range from 1.25 to 10.13 ng/mL, with a detection limit of 1.25 ng/mL. Furthermore, the proposed method can be directly used to assay CRIP1 in tissue samples. Owing to its desirable sensitivity, excellent reproducibility, and high selectivity, the proposed method may hold great potential in clinical practice in the future.


Analytical Chemistry | 2015

Peptide-Based Method for Detection of Metastatic Transformation in Primary Tumors of Breast Cancer

Hao Li; Yue Huang; Yue Yu; Weiwei Li; Yongmei Yin; Genxi Li

Detection of metastatic activity before the onset of the actual metastasis can be a promising method to combat metastasis, the foremost cause of death in cancer. Therefore, in this work, we have developed an assay method for the detection of metastatic tumor cells in primary tumor, by using a protein of the metastatic cell signaling as the biomarker. In this assay, a peptide-based probe targeting the marker protein and a sensitive nanoparticle doped graphene nanolabel are combined to enable the detection of metastatic cells. Consequently, the metastatic cells can be specifically detected and discriminated from primary tumor cells. By applying this assay method to clinical samples of primary tumor, a low amount of metastatic activity can be detected in the tumor sites, which may suggest the activity of local metastatic transformation. So, these results may point to the prospect of using the proposed method for controlling metastatic cancer.

Collaboration


Dive into the Yongmei Yin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya Cao

Shanghai University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yucai Yang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Kwangnak Koh

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge