Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongqian Shi is active.

Publication


Featured researches published by Yongqian Shi.


Journal of Materials Chemistry | 2015

Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites

Bin Yu; Yongqian Shi; Bihe Yuan; Shuilai Qiu; Weiyi Xing; Weizhao Hu; Lei Song; Siuming Lo; Yuan Hu

Functionalized reduced graphene oxide (FRGO) wrapped with a phosphorus and nitrogen-containing flame retardant (FR) was successfully prepared via a simple one-pot method and well characterized. Subsequently, FRGO was covalently incorporated into epoxy resin (EP) to prepare flame retardant nanocomposites. The FRGO was well dispersed in the matrix and formed strong interfacial adhesion. Thermogravimetric analysis results revealed that the presence of RGO, FR or FRGO in an EP matrix led to a slight thermal destabilization effect under air and nitrogen, which increased the char yield at 700 °C and reduced the maximum mass loss rate. Furthermore, the glass transition temperature of the FRGO/EP nanocomposite with an FRGO loading of 4 wt% (FRGO/EP4) was remarkably increased by 29.6 °C, probably due to the improved crosslinking density and confinement effect of graphene sheets on the mobility of polymer networks. The evaluation of combustion behavior demonstrated that a 43.0% reduction in the peak heat release rate (PHRR) for the FRGO/EP nanocomposite containing 2 wt% FRGO and a 30.2% reduction in the total heat release (THR) for FRGO/EP4 over pure EP were achieved by the addition of FRGO. These notable reductions in fire hazards were mainly due to the synergistic effect of FRGO and the flame retardant: the wrapped flame retardant accelerated the degradation of the EP matrix, promoting the formation of additional char residues; the flame retardant improved the thermal oxidative resistance of the graphene; a high-thermal-stability char layer, consisting of graphene sheets, retarded the permeation of heat and the escape of volatile degradation products.


ACS Applied Materials & Interfaces | 2011

Effect of Cellulose Acetate Butyrate Microencapsulated Ammonium Polyphosphate on the Flame Retardancy, Mechanical, Electrical, and Thermal Properties of Intumescent Flame-Retardant Ethylene–Vinyl Acetate Copolymer/Microencapsulated Ammonium Polyphosphate/Polyamide-6 Blends

Bibo Wang; Qinbo Tang; Ningning Hong; Lei Song; Lei Wang; Yongqian Shi; Yuan Hu

Ammonium polyphosphate (APP), a widely used intumescent flame retardant, has been microencapsulated by cellulose acetate butyrate with the aim of enhancing the water resistance of APP and the compatibility between the ethylene-vinyl acetate copolymer (EVA) matrix and APP. The structure of microencapsulated ammonium polyphosphate (MCAPP) was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and water contact angle (WCA). The flame retadancy and thermal stability were investigated by a limiting oxygen index (LOI) test, UL-94 test, cone calorimeter, and thermogravimetric analysis (TGA). The WCA results indicated that MCAPP has excellent water resistance and hydrophobicity. The results demonstrated that MCAPP enhanced interfacial adhesion, mechanical, electrical, and thermal stability of the EVA/MCAPP/polyamide-6 (PA-6) system. The microencapsulation not only imparted EVA/MCAPP/PA-6 with a higher LOI value and UL-94 rating but also could significantly improve the fire safety. Furthermore, the microencapsulated EVA/MCAPP/PA-6 composites can still pass the UL-94 V-0 rating after treatment with water for 3 days at 70 °C, indicating excellent water resistance. This investigation provides a promising formulation for the intumescent flame retardant EVA with excellent properties.


ACS Applied Materials & Interfaces | 2015

MoS2 Nanolayers Grown on Carbon Nanotubes: An Advanced Reinforcement for Epoxy Composites

Keqing Zhou; Jiajia Liu; Yongqian Shi; Saihua Jiang; Dong Wang; Yuan Hu; Zhou Gui

In the present study, carbon nanotubes (CNTs) wrapped with MoS2 nanolayers (MoS2-CNTs) were facilely synthesized to obtain advanced hybrids. The structure of the MoS2-CNT hybrids was characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy measurements. Subsequently, the MoS2-CNT hybrids were incorporated into EP for reducing fire hazards. Compared with pristine CNTs, MoS2-CNT hybrids showed good dispersion in EP matrix and no obvious aggregation of CNTs was observed. The obtained nanocomposites exhibited significant improvements in thermal properties, flame retardancy and mechanical properties, compared with those of neat EP and composites with a single CNT or MoS2. With the incorporation of 2.0 wt % of MoS2-CNT hybrids, the char residues and glass transition temperature (Tg) of the EP composite was significantly increased. Also, the addition of MoS2-CNT hybrids awarded excellent fire resistance to the EP matrix, which was evidenced by the significantly reduced peak heat release rate and total heat release. Moreover, the amount of organic volatiles from EP decomposition was obviously decreased, and the formation of toxic CO was effectively suppressed, implying the toxicity of the volatiles was reduced and smoke production was obviously suppressed. The dramatically reduced fire hazards were generally ascribed to the synergistic effect of MoS2 and CNTs, containing good dispersion of MoS2-CNT hybrids, catalytic char function of MoS2 nanolayers, and physical barrier effects of MoS2 nanolayers and CNT network structure.


Journal of Materials Chemistry | 2013

Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins

Xiaodong Qian; Lei Song; Bin Yu; Bibo Wang; Bihe Yuan; Yongqian Shi; Yuan Hu; Richard K. K. Yuen

In this work, a simple and efficient approach for the preparation of organic–inorganic hybrids flame retardants (FRs-rGO), aiming at improving the flame retardant efficiency was presented. The reduced graphite oxide (rGO) was incorporated into the flame retardants matrix by in situ sol–gel process, resulting in the formation of organic–inorganic hybrids flame retardants containing exfoliated rGO. The TEM results of FRs-rGO hybrids revealed that the rGO was previously exfoliated in the phosphorus and silicon containing FRs. Subsequently, the flame retardant (FRs-rGO) was incorporated into epoxy resins (EP). The previous exfoliation of rGO in the FRs allows rGO to be intimately mixed with epoxy resins, which can be confirmed by the TEM results of FRs-rGO/EP nanocomposites. With the incorporation of 5 wt% of FRs-rGO into EP, satisfied flame retardant grade (V0) and the LOI as high as 29.5 were obtained. The char residues of the FRs-rGO/EP nanocomposites were significantly increased in air as well as nitrogen atmosphere. Moreover, the peak heat release rate (pHRR) value of FRs-rGO/EP was significantly reduced by 35%, and the glass transition temperature (Tg) of FRs-rGO/EP nanocomposites shifted to higher temperature, compared to those of neat EP. The flame retardancy strategy of FRs-rGO combines condensed phase and gas phase flame retardant strategies such as the nanocomposites technique, phosphorus–silicon synergism systems in the condensed phase and DOPO flame retardant systems in the gas phase. Moreover, the flame retardants containing exfoliated graphene (FRs-rGO) provided a novel method to prepare organic–inorganic hybrids flame retardants and the as-prepared flame retardants exhibited high flame retardant efficiency.


ACS Applied Materials & Interfaces | 2014

Influence of g-C3N4 nanosheets on thermal stability and mechanical properties of biopolymer electrolyte nanocomposite films: a novel investigation.

Yongqian Shi; Saihua Jiang; Keqing Zhou; Chenlu Bao; Bin Yu; Xiaodong Qian; Bibo Wang; Ningning Hong; Panyue Wen; Zhou Gui; Yuan Hu; Richard K. K. Yuen

A series of sodium alginate (SA) nanocomposite films with different loading levels of graphitic-like carbon nitride (g-C3N4) were fabricated via the casting technique. The structure and morphology of nanocomposite films were investigated by X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Thermogravimetric analysis results suggested that thermal stability of all the nanocomposite films was enhanced significantly, including initial thermal degradation temperature increased by 29.1 °C and half thermal degradation temperature improved by 118.2 °C. Mechanical properties characterized by tensile testing and dynamic mechanical analysis measurements were also reinforced remarkably. With addition of 6.0 wt % g-C3N4, the tensile strength of SA nanocomposite films was dramatically enhanced by 103%, while the Youngs modulus remarkably increased from 60 to 3540 MPa. Moreover, the storage modulus significantly improved by 34.5% was observed at loadings as low as 2.0 wt %. These enhancements were further investigated by means of differential scanning calorimetry and real time Fourier transform infrared spectra. A new perspective of balance was proposed to explain the improvement of those properties for the first time. At lower than 1.0 wt % loading, most of the g-C3N4 nanosheets were discrete in the SA matrix, resulting in improved thermal stability and mechanical properties; above 1.0 wt % and below 6.0 wt % content, the aggregation was present in SA host coupled with insufficient hydrogen bondings limiting the barrier for heat and leading to the earlier degradation and poor dispersion; at 6.0 wt % addition, the favorable balance was established with enhanced thermal and mechanical performances. However, the balance point of 2.0 wt % from dynamic mechanical analysis was due to combination of temperature and agglomeration. The work may contribute to a potential research approach for other nanocomposites.


Journal of Materials Chemistry | 2014

Ternary graphene–CoFe2O4/CdS nanohybrids: preparation and application as recyclable photocatalysts

Yongqian Shi; Keqing Zhou; Bibo Wang; Saihua Jiang; Xiaodong Qian; Zhou Gui; Richard K. K. Yuen; Yuan Hu

Graphene (Gr)-based binary Gr–CoFe2O4 and Gr–CdS or ternary Gr–CoFe2O4/CdS nanohybrids were prepared via a facile solvothermal strategy. It was encouraging to find that the ternary Gr–CoFe2O4/CdS nanohybrids exhibited the highest photocatalytic degradation ability (80%) among all the photocatalysts. The significant enhancement in photodegradation under 40 W daylight lamp irradiation was attributed to graphene acting as a “bridge”, where electrons generated from CoFe2O4 were transferred to CdS by graphene and finally led to separation of electrons and holes. Interestingly, neat CoFe2O4 resulted in increasing concentration of methylene blue (MB) as the irradiation time increased. The phenomenon was ascribed to adsorption of MB molecules on CoFe2O4 in the dark and desorption from the photocatalyst during irradiation, confirmed by our ingenious experiment. Digital photos of the Gr–CoFe2O4/CdS hybrids in an external magnetic field indicated that the ternary photocatalyst could be easily separated from aqueous solution. The recycle measurements of the photocatalyst revealed that the ternary nanohybrids exhibited acceptable photocatalytic stability due to unstable decoration. This work would provide a new insight into the construction of visible light-responsive and magnetic separable photocatalysts with high performances.


Journal of Hazardous Materials | 2015

Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites

Yongqian Shi; Bin Yu; Keqing Zhou; Richard K. K. Yuen; Zhou Gui; Yuan Hu; Saihua Jiang

Novel spinel copper cobaltate (CuCo2O4)/graphitic carbon nitride (g-C3N4) (named C-CuCo2O4) nanohybrids with different weight ratios of g-C3N4 to CuCo2O4 were successfully synthesized via a facile hydrothermal method. Then the nanohybrids were added into the thermoplastic polyurethane (TPU) matrix to prepare TPU nanocomposites using a master batch-melt compounding approach. Morphological analysis indicated that CuCo2O4 nanoparticles were uniformly distributed on g-C3N4 nanosheets. Thermal analysis revealed that C-CuCo2O4-7 (proportion of g-C3N4 to CuCo2O4 of 93/7) was an optimal nanohybrid for the properties improvement of TPU. Incorporation of C-CuCo2O4-7 into TPU led to significant improvements in the onset decomposition temperature, temperature at maximal mass loss rate and char yields. The heat release rate and total heat release of TPU/C-CuCo2O4-7 decreased by 37% and 31.3%, respectively, compared with those of pure TPU. Furthermore, the amounts of pyrolysis gaseous products, including combustible volatiles and carbon monoxide (CO), were remarkably reduced, whereas, non-flammable gas (carbon dioxide) increased. Excellent dispersion of C-CuCo2O4-7 in TPU host was achieved, due to the synergistic effect between g-C3N4 and CuCo2O4. Enhancements in the thermal stability and flame retardancy were attributed to the explanations that g-C3N4 nanosheets showed the physical barrier effect and catalytic nitrogen monoxide (NO) decomposition, and that CuCo2O4 catalyzes the reaction of CO with NO and increased char residues.


RSC Advances | 2014

Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties

Keqing Zhou; Qiangjun Zhang; Jiajia Liu; Biao Wang; Saihua Jiang; Yongqian Shi; Yuan Hu; Zhou Gui

As a graphene-like layered nanomaterial, molybdenum disulfide (MoS2) has gained intensive attention from the materials community. In our research, MoS2 is firstly modified with ferrocene (Fe–MoS2) on a large scale and then is used as a nanofiller to prepare PS composites by a masterbatch-based melt blending method. The aim of our present study is to study the synergistic effect of ferrocene and MoS2 on the thermal stability, fire resistance and smoke suppression properties of the PS composites. It was found that the thermal stability of the PS composite was obviously enhanced upon the introduction of 3.0 wt% Fe–MoS2. The cone test results indicated that the PS/Fe–MoS2 composites exhibited superior flame retardance to PS/MoS2 and PS/ferrocene composites. Furthermore, the addition of Fe–MoS2 could improve the smoke suppression properties of PS composites, as evidenced by the reduction of the carbon monoxide production rate and smoke production rate (SPR). The total flammable gaseous products from the PS composites were decreased which further led to the inhibition of smoke. Such a significant improvement in thermal stability, fire resistance and smoke suppression properties was mainly attributed to good dispersion of the modified MoS2 nanosheets, synergistic effects between ferrocene and MoS2 nanosheets, physical barrier effects of MoS2 nanosheets and the presence of ferrocene and MoS2 can promote char formation simultaneously.


Journal of Hazardous Materials | 2017

Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene

Yongqian Shi; Bin Yu; Lijin Duan; Zhou Gui; Bibo Wang; Yuan Hu; Richard K. K. Yuen

Graphitic carbon nitride/organic aluminum hypophosphites (g-C3N4/OAHPi) hybrids, i.e., CPDCPAHPi and CBPODAHPi, were synthesized by esterification and salification reactions, and then incorporated into polystyrene (PS) to prepare composites through a melt blending method. Structure and morphology characterizations demonstrated the successful synthesis of PDCPAHPi, BPODAHPi and their hybrids. The g-C3N4 protected OAHPi from external heat and thus improved the thermal stability of OAHPi. Combining g-C3N4 with OAHPi contributed to reduction in peak of heat release rate, total heat release and smoke production rate of PS matrix. Reduced smoke released has also been demonstrated by smoke density chamber testing. Additionally, introduction of the hybrids led to decreased release of flammable aromatic compounds. These properties improvement could be attributed to gas phase action and physical barrier effect in condensed phase: phosphorus-containing low-energy radicals generated from OAHPi effectively captured high-energy free-radicals evolved from PS; g-C3N4 nanosheets retarded the permeation of heat and the escape of volatile degradation products. Therefore, g-C3N4/OAHPi hybrids will provide a potential strategy to reduce the fire hazards of PS.


Journal of Hazardous Materials | 2016

The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites

Bibo Wang; Haibo Sheng; Yongqian Shi; Lei Song; Yan Zhang; Yuan Hu; Weizhao Hu

A uniform zinc hydroxystannate (ZnHS) microcube was synthesized to reduce toxicity and fire hazards of thermoplastic polyurethane (TPU) composites using ammonium polyphosphate as a flame retardant agent. The structure, morphology and thermal properties of ZnHS were characterized by X-ray diffraction, transmission electron microscopy and thermogravimetric analysis, respectively. Smoke suppression properties and synergistic flame retardant effect of ZnHS on flame retardant TPU composites were intensively investigated by smoke density test, cone calorimeter test, and thermalgravimetric analysis. Thermogravimetric analysis/infrared spectrometry and tube furnace were employed to evaluate the toxic gases (CO, NOx and HCN) of TPU composites. The incorporation of ZnHS into TPU matrix effectively improved the fire safety and restrained the smoke density, which is attributed to that the char residue catalyzed by ZnHS enhanced barrier effect that reduced peak heat release rate, total heat release, smoke particles and organic volatiles during combustion. Furthermore, the ZnHS synergist demonstrated high efficiency in catalytic degradation of the toxic gases, which obviously decreased total volatiled product and toxic volatiles evolved, such as the CO, HCN and NOx, indicating suppressed toxicity of the TPU composites.

Collaboration


Dive into the Yongqian Shi's collaboration.

Top Co-Authors

Avatar

Yuan Hu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhou Gui

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Bibo Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Keqing Zhou

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Lei Song

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Saihua Jiang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bin Yu

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Richard K. K. Yuen

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Qian

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Siuming Lo

City University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge