Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongqiang Chen is active.

Publication


Featured researches published by Yongqiang Chen.


Cell Death & Differentiation | 2008

Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer Cells

Yongqiang Chen; Eileen McMillan-Ward; Jiming Kong; Sara J. Israels; Spencer B. Gibson

Autophagy is a self-digestion process that degrades intracellular structures in response to stresses leading to cell survival. When autophagy is prolonged, this could lead to cell death. Generation of reactive oxygen species (ROS) through oxidative stress causes cell death. The role of autophagy in oxidative stress-induced cell death is unknown. In this study, we report that two ROS-generating agents, hydrogen peroxide (H2O2) and 2-methoxyestradiol (2-ME), induced autophagy in the transformed cell line HEK293 and the cancer cell lines U87 and HeLa. Blocking this autophagy response using inhibitor 3-methyladenine or small interfering RNAs against autophagy genes, beclin-1, atg-5 and atg-7 inhibited H2O2 or 2-ME-induced cell death. H2O2 and 2-ME also induced apoptosis but blocking apoptosis using the caspase inhibitor zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone) failed to inhibit autophagy and cell death suggesting that autophagy-induced cell death occurred independent of apoptosis. Blocking ROS production induced by H2O2 or 2-ME through overexpression of manganese-superoxide dismutase or using ROS scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt decreased autophagy and cell death. Blocking autophagy did not affect H2O2- or 2-ME-induced ROS generation, suggesting that ROS generation occurs upstream of autophagy. In contrast, H2O2 or 2-ME failed to significantly increase autophagy in mouse astrocytes. Taken together, ROS induced autophagic cell death in transformed and cancer cells but failed to induce autophagic cell death in non-transformed cells.


Cell Death & Differentiation | 2009

Superoxide is the major reactive oxygen species regulating autophagy.

Yongqiang Chen; Meghan B. Azad; Spencer B. Gibson

Autophagy is involved in human diseases and is regulated by reactive oxygen species (ROS) including superoxide (O2•−) and hydrogen peroxide (H2O2). However, the relative functions of O2•− and H2O2 in regulating autophagy are unknown. In this study, autophagy was induced by starvation, mitochondrial electron transport inhibitors, and exogenous H2O2. We found that O2•− was selectively induced by starvation of glucose, L-glutamine, pyruvate, and serum (GP) whereas starvation of amino acids and serum (AA) induced O2•− and H2O2. Both types of starvation induced autophagy and autophagy was inhibited by overexpression of SOD2 (manganese superoxide dismutase, Mn-SOD), which reduced O2•− levels but increased H2O2 levels. Starvation-induced autophagy was also inhibited by the addition of catalase, which reduced both O2•− and H2O2 levels. Starvation of GP or AA also induced cell death that was increased following treatment with autophagy inhibitors 3-methyladenine, and wortamannin. Mitochondrial electron transport chain (mETC) inhibitors in combination with the SOD inhibitor 2-methoxyestradiol (2-ME) increased O2•− levels, lowered H2O2 levels, and increased autophagy. In contrast to starvation, cell death induced by mETC inhibitors was increased by 2-ME. Finally, adding exogenous H2O2 induced autophagy and increased intracellular O2•− but failed to increase intracellular H2O2. Taken together, these findings indicate that O2•− is the major ROS-regulating autophagy.


Journal of Cell Science | 2007

Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species

Yongqiang Chen; Eileen McMillan-Ward; Jiming Kong; Sara J. Israels; Spencer B. Gibson

Autophagy is a self-digestion process important for cell survival during starvation. It has also been described as a form of programmed cell death. Mitochondria are important regulators of autophagy-induced cell death and damaged mitochondria are often degraded by autophagosomes. Inhibition of the mitochondrial electron transport chain (mETC) induces cell death through generating reactive oxygen species (ROS). The role of mETC inhibitors in autophagy-induced cell death is unknown. Herein, we determined that inhibitors of complex I (rotenone) and complex II (TTFA) induce cell death and autophagy in the transformed cell line HEK 293, and in cancer cell lines U87 and HeLa. Blocking the expression of autophagic genes (beclin 1 and ATG5) by siRNAs or using the autophagy inhibitor 3-methyladenine (3-MA) decreased cell death that was induced by rotenone or TTFA. Rotenone and TTFA induce ROS production, and the ROS scavenger tiron decreased autophagy and cell death induced by rotenone and TTFA. Overexpression of manganese-superoxide dismutase (SOD2) in HeLa cells decreased autophagy and cell death induced by rotenone and TTFA. Furthermore, blocking SOD2 expression by siRNA in HeLa cells increased ROS generation, autophagy and cell death induced by rotenone and TTFA. Rotenone- and TTFA-induced ROS generation was not affected by 3-MA, or by beclin 1 and ATG5 siRNAs. By contrast, treatment of non-transformed primary mouse astrocytes with rotenone or TTFA failed to significantly increase levels of ROS or autophagy. These results indicate that targeting mETC complex I and II selectively induces autophagic cell death through a ROS-mediated mechanism.


Autophagy | 2008

HYPOXIA INDUCES AUTOPHAGIC CELL DEATH IN APOPTOSIS-COMPETENT CELLS THROUGH A MECHANISM INVOLVING BNIP3

Meghan B. Azad; Yongqiang Chen; Elizabeth S. Henson; Jeannick Cizeau; Eileen McMillan-Ward; Sara J. Israels; Spencer B. Gibson

Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosis-resistant. Autophagy (cellular “self digestion”) has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (


Autophagy | 2008

Is mitochondrial generation of reactive oxygen species a trigger for autophagy

Yongqiang Chen; Spencer B. Gibson

Autophagy is a conserved lysosomal degradation pathway that has been extensively studied in recent years. However, the mechanism of autophagy induction is still not clear. Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial mediated apoptosis is the production of reactive oxygen species (ROS). Recently, several studies have indicated that ROS may be also involved in induction of autophagy. ROS are molecules or ions that are formed by the incomplete one-electron reduction of oxygen, including superoxide (O2.-), hydrogen peroxide (H2O2), hydroxyl radical (·OH), nitric oxide (NO), and peroxynitrite (ONOO-). Our recent studies provide strong evidences for the involvement of mitochondrially-generated ROS production in the induction of autophagy as determined by the formation of autophagosomes and autolysosomes. This was accomplished through treatment with mitochondrial toxins that inhibit the electron transport chain in transformed and cancer cells. In addition, we have determined that H2O2 and 2-methoxyestradiol (inhibitor of superoxide dismutases and electron transport chain) induce autophagy leading to cell death. In contrast, normal astrocytes fail to induce autophagy following treatment with mitochondrial toxins. Herein, we discuss several important points of our studies and provide a model for mitochondrially-induced autophagic cell death mediated by ROS. Addendum to: Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial Electron-Transport-Chain Inhibitors of Complexes I and II Induce Autophagic Cell Death Mediated by Reactive Oxygen Species. J Cell Sci 2007; 120:4155-66.


Autophagy | 2016

Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia

Yongqiang Chen; Elizabeth S. Henson; Wenyan Xiao; Daniel Huang; Eileen McMillan-Ward; Sara J. Israels; Spencer B. Gibson

ABSTRACT Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.


Cancers | 2017

EGFR Family Members’ Regulation of Autophagy Is at a Crossroads of Cell Survival and Death in Cancer

Elizabeth S. Henson; Yongqiang Chen; Spencer B. Gibson

The epidermal growth factor receptor (EGFR) signaling pathways are altered in many cancers contributing to increased cell survival. These alterations are caused mainly through increased expression or mutation of EGFR family members EGFR, ErbB2, ErbB3, and ErbB4. These receptors have been successfully targeted for cancer therapy. Specifically, a monoclonal antibody against ErbB2, trastuzumab, and a tyrosine kinase inhibitor against EGFR, gefitinib, have improved the survival of breast and lung cancer patients. Unfortunately, cancer patients frequently become resistant to these inhibitors. This has led to investigating how EGFR can contribute to cell survival and how cancer cells can overcome inhibition of its signaling. Indeed, it is coming into focus that EGFR signaling goes beyond a single signal triggering cell proliferation and survival and is a sensor that regulates the cell’s response to microenvironmental stresses such as hypoxia. It acts as a switch that modulates the ability of cancer cells to survive. Autophagy is a process of self-digestion that is inhibited by EGFR allowing cancer cells to survive under stresses that would normally cause death and become resistant to chemotherapy. Inhibiting EGFR signaling allows autophagy to contribute to cell death. This gives new opportunities to develop novel therapeutic strategies to treat cancers that rely on EGFR signaling networks and autophagy. In this review, we summarize the current understanding of EGFR family member regulation of autophagy in cancer cells and how new therapeutic strategies could be developed to overcome drug resistance.


Cell Death and Disease | 2016

Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells

S Ma; Elizabeth S. Henson; Yongqiang Chen; Spencer B. Gibson

Ferroptosis is an iron-dependent, oxidative cell death, and is distinct from apoptosis, necrosis and autophagy. In this study, we demonstrated that lysosome disrupting agent, siramesine and a tyrosine kinase inhibitor, lapatinib synergistically induced cell death and reactive oxygen species (ROS) in MDA MB 231, MCF-7, ZR-75 and SKBr3 breast cancer cells over a 24 h time course. Furthermore, the iron chelator deferoxamine (DFO) significantly reduced cytosolic ROS and cell death following treatment with siramesine and lapatinib. Furthermore, we determined that FeCl3 levels were elevated in cells treated with siramesine and lapatinib indicating an iron-dependent cell death, ferroptosis. To confirm this, we treated cells with a potent inhibitor of ferroptosis, ferrastatin-1 that effectively inhibited cell death following siramesine and lapatinib treatment. The increase levels of iron could be due to changes in iron transport. We found that the expression of transferrin, which is responsible for the transport of iron into cells, is increased following treatment with lapatinib alone or in combination with siramesine. Knocking down of transferrin resulted in decreased cell death and ROS after treatment. In addition, ferroportin-1 (FPN) is an iron transport protein, responsible for removal of iron from cells. We found its expression is decreased after treatment with siramesine alone or in combination with lapatinib. Overexpression FPN resulted in decreased ROS and cell death whereas knockdown of FPN increased cell death after siramesine and lapatinib treatment. This indicates a novel induction of ferroptosis through altered iron regulation by treating breast cancer cells with a lysosome disruptor and a tyrosine kinase inhibitor.


Cancer Biology & Therapy | 2016

Bcl-2 family member Mcl-1 expression is reduced under hypoxia by the E3 ligase FBW7 contributing to BNIP3 induced cell death in glioma cells

Yongqiang Chen; Elizabeth S. Henson; Wenyan Xiao; Epsita Shome; Meghan B. Azad; Teralee R. Burton; Michelle Queau; Akshay Sathya; David D. Eisenstat; Spencer B. Gibson

Mcl-1 is an anti-apoptotic Bcl-2 family member that is often over-expressed in the malignant brain tumor glioblastoma (GBM). It has been previously shown that epidermal growth factor receptors up-regulate Mcl-1 contributing to a cell survival response. Hypoxia is a poor prognostic marker in glioblastoma despite the fact that hypoxic regions have areas of necrosis. Hypoxic regions of GBM also highly express the pro-cell death Bcl-2 family member BNIP3, yet when BNIP3 is overexpressed in glioma cells, it induces cell death. The reasons for this discrepancy are unclear. Herein we have found that Mcl-1 expression is reduced under hypoxia due to degradation by the E3 ligase FBW7 leading to increased hypoxia induced cell death. This cell death is reduced by EGFR activation leading to increased Mcl-1 expression under hypoxia. Conversely, BNIP3 is over-expressed in hypoxia at times when Mcl-1 expression is decreased. Knocking down BNIP3 expression reduces hypoxia cell death and Mcl-1 expression effectively blocks BNIP3 induced cell death. Of significance, BNIP3 and Mcl-1 are co-localized under hypoxia in glioma cells. These results suggest that Mcl-1 can block the ability of BNIP3 to induce cell death under hypoxia in GBM tumors.


PLOS ONE | 2017

Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells

Shumei Ma; Rebecca F. Dielschneider; Elizabeth S. Henson; Wenyan Xiao; Tricia R. Choquette; Anna R. Blankstein; Yongqiang Chen; Spencer B. Gibson

Ferroptosis is a cell death pathway characterized by iron-dependent accumulation of reactive oxygen species (ROS) within the cell. The combination of siramesine, a lysosome disruptor, and lapatinib, a dual tyrosine kinase inhibitor, has been shown to synergistically induce cell death in breast cancer cells mediated by ferroptosis. These treatments also induce autophagy but its role in this synergistic cell death is unclear. In this study, we determined that siramesine and lapatinib initially induced ferroptosis but changes to an autophagy induced cell death after 24 hours. Furthermore, we found that intracellular iron level increased in a time dependent manner following treatment accompanied by an increase in ROS. Using the iron chelator deferoxamine (DFO) or the ROS scavenger alpha-tocopherol decreased both autophagy flux and cell death. We further discovered that decreased expression of the iron storage protein, ferritin was partially dependent upon autophagy degradation. In contrast, the expression of transferrin, which is responsible for the transport of iron into cells, is increased following treatment with lapatinib alone or in combination with siramesine. This indicates that ferroptosis and autophagy induced cell death occur independently but both are mediated by iron dependent ROS generation in breast cancer cells.

Collaboration


Dive into the Yongqiang Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyan Xiao

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiming Kong

University of Manitoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge