Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenyan Xiao is active.

Publication


Featured researches published by Wenyan Xiao.


Developmental Cell | 2003

Imprinting of the MEA Polycomb Gene Is Controlled by Antagonism between MET1 Methyltransferase and DME Glycosylase

Wenyan Xiao; Mary Gehring; Yeonhee Choi; Linda Margossian; Hong Pu; John J. Harada; Robert B. Goldberg; Roger I. Pennell; Robert L. Fischer

The MEA Polycomb gene is imprinted in the Arabidopsis endosperm. DME DNA glycosylase activates maternal MEA allele expression in the central cell of the female gametophyte, the progenitor of the endosperm. Maternal mutant dme or mea alleles result in seed abortion. We identified mutations that suppress dme seed abortion and found that they reside in the MET1 methyltransferase gene, which maintains cytosine methylation. Seeds with maternal dme and met1 alleles survive, indicating that suppression occurs in the female gametophyte. Suppression requires a maternal wild-type MEA allele, suggesting that MET1 functions upstream of, or at, MEA. DME activates whereas MET1 suppresses maternal MEA::GFP allele expression in the central cell. MET1 is required for DNA methylation of three regions in the MEA promoter in seeds. Our data suggest that imprinting is controlled in the female gametophyte by antagonism between the two DNA-modifying enzymes, MET1 methyltransferase and DME DNA glycosylase.


The Plant Cell | 2006

DNA Methylation Is Critical for Arabidopsis Embryogenesis and Seed Viability

Wenyan Xiao; Kendra D. Custard; Roy C. Brown; Betty E. Lemmon; John J. Harada; Robert B. Goldberg; Robert L. Fischer

DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.


Plant Physiology | 2006

Regulation of Seed Size by Hypomethylation of Maternal and Paternal Genomes

Wenyan Xiao; Roy C. Brown; Betty E. Lemmon; John J. Harada; Robert B. Goldberg; Robert L. Fischer

DNA methylation is an epigenetic modification of cytosine that is important for silencing gene transcription and transposons, gene imprinting, development, and seed viability. DNA METHYLTRANSFERASE1 (MET1) is the primary maintenance DNA methyltransferase in Arabidopsis (Arabidopsis thaliana). Reciprocal crosses between antisense MET1 transgenic and wild-type plants show that DNA hypomethylation has a parent-of-origin effect on seed size. However, due to the dominant nature of the antisense MET1 transgene, the parent with a hypomethylated genome, its gametophyte, and both the maternal and paternal genomes of the F1 seed become hypomethylated. Thus, the distinct role played by hypomethylation at each generation is not known. To address this issue, we examined F1 seed from reciprocal crosses using a loss-of-function recessive null allele, met1-6. Crosses between wild-type and homozygous met1-6 parents show that hypomethylated maternal and paternal genomes result in significantly larger and smaller F1 seeds, respectively. Our analysis of crosses between wild-type and heterozygous MET1/met1-6 parents revealed that hypomethylation in the female or male gametophytic generation was sufficient to influence F1 seed size. A recessive mutation in another gene that dramatically reduces DNA methylation, DECREASE IN DNA METHYLATION1, also causes parent-of-origin effects on F1 seed size. By contrast, recessive mutations in genes that regulate a smaller subset of DNA methylation (CHROMOMETHYLASE3 and DOMAINS REARRANGED METHYLTRANSFERASES1 and 2) had little effect on seed size. Collectively, these results show that maternal and paternal genomes play distinct roles in the regulation of seed size in Arabidopsis.


Plant Journal | 2012

Histone H1 affects gene imprinting and DNA methylation in Arabidopsis

Matthew Rea; Wenguang Zheng; Ming Chen; Christopher Braud; Drutdaman Bhangu; Tara N. Rognan; Wenyan Xiao

Imprinting, i.e. parent-of-origin expression of alleles, plays an important role in regulating development in mammals and plants. DNA methylation catalyzed by DNA methyltransferases plays a pivotal role in regulating imprinting by silencing parental alleles. DEMETER (DME), a DNA glycosylase functioning in the base-excision DNA repair pathway, can excise 5-methylcytosine from DNA and regulate genomic imprinting in Arabidopsis. DME demethylates the maternal MEDEA (MEA) promoter in endosperm, resulting in expression of the maternal MEA allele. However, it is not known whether DME interacts with other proteins in regulating gene imprinting. Here we report the identification of histone H1.2 as a DME-interacting protein in a yeast two-hybrid screen, and confirmation of their interaction by the in vitro pull-down assay. Genetic analysis of the loss-of-function histone h1 mutant showed that the maternal histone H1 allele is required for DME regulation of MEA, FWA and FIS2 imprinting in Arabidopsis endosperm but the paternal allele is dispensable. Furthermore, we show that mutations in histone H1 result in an increase of DNA methylation in the maternal MEA and FWA promoter in endosperm. Our results suggest that histone H1 is involved in DME-mediated DNA methylation and gene regulation at imprinted loci.


Plant Physiology | 2012

LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis

Christopher Braud; Wenguang Zheng; Wenyan Xiao

Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis.


Methods of Molecular Biology | 2012

Specialized Technologies for Epigenetics in Plants

Wenyan Xiao

Plants are excellent systems for discovering and studying epigenetic phenomena, such as transposon silencing, RNAi, imprinting, and DNA methylation. Imprinting, referring to preferential expression of maternal or paternal alleles, plays an important role in reproduction development of both mammals and plants. DNA methylation is critical for determining whether the maternal or paternal alleles of an imprinted gene is expressed or silenced. In flowering plants, there is a double fertilization event in reproduction: one sperm fertilizes the egg cell to form embryo and a second sperm fuses with the central cell to give rise to endosperm. Endosperm is the tissue where imprinting occurs in plants. MEDEA (MEA), a SET domain Polycomb group gene, was the first plant gene shown to be imprinted in endosperm, and its maternal expression is controlled by DNA methylation and demethylation. Recently there has been significant progress in identifying imprinted genes as well as understanding molecular mechanisms of imprinting in plants. Up to date, approximately 350 genes were found to have differential parent-of-origin expression in plant endosperm (Arabidopsis, corn, and rice). In Arabidopsis, many imprinted genes are regulated by the DNA METHYLTRANSFERASE1 (MET1) and the DNA-demethylating glycosylase DEMETER (DME), and/or their chromatin states regulated by Polycomb group proteins (PRC2). There are also maternally expressed genes regulated by unknown mechanisms in endosperm. In this protocol, we describe in detail how to perform a genetic cross, isolate the endosperm tissue from seed, determine the imprinting status of a gene, and analyze DNA methylation of imprinted genes by bisulfite sequencing in Arabidopsis.


Journal of Visualized Experiments | 2011

Determination of DNA Methylation of Imprinted Genes in Arabidopsis Endosperm

Matthew Rea; Ming Chen; Shan Luan; Drutdaman Bhangu; Max Braud; Wenyan Xiao

Arabidopsis thaliana is an excellent model organism for studying epigenetic mechanisms. One of the reasons is the loss-of-function null mutant of DNA methyltransferases is viable, thus providing a system to study how loss of DNA methylation in a genome affects growth and development. Imprinting refers to differential expression of maternal and paternal alleles and plays an important role in reproduction development in both mammal and plants. DNA methylation is critical for determining whether the maternal or paternal alleles of an imprinted gene is expressed or silenced. In flowering plants, there is a double fertilization event in reproduction: one sperm cell fertilizes the egg cell to form embryo and a second sperm fuses with the central cell to give rise to endosperm. Endosperm is the tissue where imprinting occurs in plants. MEDEA, a SET domain Polycomb group gene, and FWA, a transcription factor regulating flowering, are the first two genes shown to be imprinted in endosperm and their expression is controlled by DNA methylation and demethylation in plants. In order to determine imprinting status of a gene and methylation pattern in endosperm, we need to be able to isolate endosperm first. Since seed is tiny in Arabidopsis, it remains challenging to isolate Arabidopsis endosperm and examine its methylation. In this video protocol, we report how to conduct a genetic cross, to isolate endosperm tissue from seeds, and to determine the methylation status by bisulfite sequencing.


Scientific Reports | 2018

Author Correction: Dynamic Changes of Genome-Wide DNA Methylation during Soybean Seed Development

Yong-qiang Charles An; Wolfgang Goettel; Qiang Han; Arthur Bartels; Zongrang Liu; Wenyan Xiao

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.


International Journal of Molecular Sciences | 2018

Dynamic DNA Methylation in Plant Growth and Development

Arthur Bartels; Qiang Han; Pooja Nair; Liam Stacey; Hannah Gaynier; Matthew Mosley; Qi Huang; Jacob Pearson; Tzung-Fu Hsieh; Yong-Qiang An; Wenyan Xiao

DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.


Plant Signaling & Behavior | 2013

Identification and analysis of LNO1-Like and AtGLE1-Like Nucleoporins in plants

Christopher Braud; Wenguang Zheng; Wenyan Xiao

Nucleoporins (Nups) are building blocks of the nuclear pore complex (NPC) that mediate cargo trafficking between the nucleus and the cytoplasm. Although the physical structure of the NPC is well studied in yeast and vertebrates, little is known about the structure of NPCs or the function of most Nups in plants. Recently we demonstrated two Nups in Arabidopsis: LONO1 (LNO1), homolog of human NUP214 and yeast Nup159, and AtGLE1, homolog of yeast Gle1, are required for early embryogenesis and seed development. To identify LNO1 and AtGLE1 homologs in other plant species, we searched the protein databases and identified 30 LNO1-like and 35 AtGLE1-like proteins from lower plant species to higher plants. Furthermore, phylogenetic analyses indicate that the evolutionary trees of these proteins follow expected plant phylogenies. High sequence homology and conserved domain structure of these nucleoporins suggest important functions of these proteins in nucleocytoplasmic transport, growth and development in plants.

Collaboration


Dive into the Wenyan Xiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Han

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

John J. Harada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Rea

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Ming Chen

Saint Louis University

View shared research outputs
Researchain Logo
Decentralizing Knowledge