Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongqing Yang is active.

Publication


Featured researches published by Yongqing Yang.


The Plant Cell | 2007

SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress

Ruidang Quan; Huixin Lin; Imelda Mendoza; Yuguo Zhang; Wanhong Cao; Yongqing Yang; Mei Shang; Shouyi Chen; José M. Pardo; Yan Guo

The SOS (for Salt Overly Sensitive) pathway plays essential roles in conferring salt tolerance in Arabidopsis thaliana. Under salt stress, the calcium sensor SOS3 activates the kinase SOS2 that positively regulates SOS1, a plasma membrane sodium/proton antiporter. We show that SOS3 acts primarily in roots under salt stress. By contrast, the SOS3 homolog SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCABP8)/CALCINEURIN B-LIKE10 functions mainly in the shoot response to salt toxicity. While root growth is reduced in sos3 mutants in the presence of NaCl, the salt sensitivity of scabp8 is more prominent in shoot tissues. SCABP8 is further shown to bind calcium, interact with SOS2 both in vitro and in vivo, recruit SOS2 to the plasma membrane, enhance SOS2 activity in a calcium-dependent manner, and activate SOS1 in yeast. In addition, sos3 scabp8 and sos2 scabp8 display a phenotype similar to sos2, which is more sensitive to salt than either sos3 or scabp8 alone. Overexpression of SCABP8 in sos3 partially rescues the sos3 salt-sensitive phenotype. However, overexpression of SOS3 fails to complement scabp8. These results suggest that SCABP8 and SOS3 are only partially redundant in their function, and each plays additional and unique roles in the plant salt stress response.


The Plant Cell | 2009

Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.

Huixin Lin; Yongqing Yang; Ruidang Quan; Imelda Mendoza; Yisheng Wu; Wenming Du; Shuangshuang Zhao; Karen S. Schumaker; José M. Pardo; Yan Guo

The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+ exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala, SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue, the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a critical component of SOS pathway regulation of salt tolerance in Arabidopsis.


The Plant Cell | 2010

The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the PKS5 Kinase

Yongqing Yang; Yunxia Qin; Chang Gen Xie; Feiyi Zhao; Jinfeng Zhao; Dafa Liu; Shou-Yi Chen; Anja T. Fuglsang; Michael G. Palmgren; Karen S. Schumaker; Xing Wang Deng; Yan Guo

This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H+-ATPase, showing that J3 affects activity of the ATPase by direct interaction with and inactivation of a repressor protein kinase, Salt Overly Sensitive2-Like Protein Kinase5. The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H+-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H+-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H+-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H+-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H+-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.


The Plant Cell | 2014

Inhibition of the Arabidopsis Salt Overly Sensitive Pathway by 14-3-3 Proteins

Huapeng Zhou; Huixin Lin; She Chen; Katia Becker; Yongqing Yang; Jinfeng Zhao; Jörg Kudla; Karen S. Schumaker; Yan Guo

This study demonstrates that 14-3-3 proteins negatively regulate a pathway conferring salt tolerance in plants by repressing the activity of a participating kinase in the absence of salt stress. The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na+) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress.


The Plant Cell | 2012

UBIQUITIN-SPECIFIC PROTEASE16 Modulates Salt Tolerance in Arabidopsis by Regulating Na+/H+ Antiport Activity and Serine Hydroxymethyltransferase Stability

Huapeng Zhou; Jinfeng Zhao; Yongqing Yang; Changxi Chen; Yanfen Liu; Xuehua Jin; Limei Chen; Xueyong Li; Xing Wang Deng; Karen S. Schumaker; Yan Guo

This study indentifies Arabidopsis UBP16 as a functional ubiquitin-specific protease involved in salt tolerance and SERINE HYDROXYMETHYLTRANSFERASE1 as a putative target of UBP16. Protein ubiquitination is a reversible process catalyzed by ubiquitin ligases and ubiquitin-specific proteases (UBPs). We report the identification and characterization of UBP16 in Arabidopsis thaliana. UBP16 is a functional ubiquitin-specific protease and its enzyme activity is required for salt tolerance. Plants lacking UBP16 were hypersensitive to salt stress and accumulated more sodium and less potassium. UBP16 positively regulated plasma membrane Na+/H+ antiport activity. Through yeast two-hybrid screening, we identified a putative target of UBP16, SERINE HYDROXYMETHYLTRANSFERASE1 (SHM1), which has previously been reported to be involved in photorespiration and salt tolerance in Arabidopsis. We found that SHM1 is degraded in a 26S proteasome–dependent process, and UBP16 stabilizes SHM1 by removing the conjugated ubiquitin. Ser hydroxymethyltransferase activity is lower in the ubp16 mutant than in the wild type but higher than in the shm1 mutant. During salt stress, UBP16 and SHM1 function in preventing cell death and reducing reactive oxygen species accumulation, activities that are correlated with increasing Na+/H+ antiport activity. Overexpression of SHM1 in the ubp16 mutant partially rescues its salt-sensitive phenotype. Taken together, our results suggest that UBP16 is involved in salt tolerance in Arabidopsis by modulating sodium transport activity and repressing cell death at least partially through modulating SMH1stability and activity.


The Plant Cell | 2015

A Chaperone Function of NO CATALASE ACTIVITY1 Is Required to Maintain Catalase Activity and for Multiple Stress Responses in Arabidopsis

Jing Li; Juntao Liu; Guoqiang Wang; Joon Yung Cha; Guannan Li; She Chen; Zhen Li; Jinghua Guo; Caiguo Zhang; Yongqing Yang; Woe Yeon Kim; Dae-Jin Yun; Karen S. Schumaker; Zhongzhou Chen; Yan Guo

Arabidopsis protein NCA1 interacts with catalases in the cytosol and increases catalase activity through maintaining catalase folding state, which is required for stress responses. Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity.


The Plant Cell | 2013

The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress in Arabidopsis

Yi Zhao; Zhen Pan; Yan Zhang; Xiaolu Qu; Yuguo Zhang; Yongqing Yang; Xiangning Jiang; Shanjin Huang; Ming Yuan; Karen S. Schumaker; Yan Guo

This study demonstrates that salt stress–induced changes in actin microfilament dynamics regulate mitochondrial movement and activity, which in turn regulate a salt-induced calcium change and cell death. Microfilament and Ca2+ dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca2+ ([Ca2+]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca2+]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca2+]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca2+]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca2+ signaling in response to salt stress.


The Plant Cell | 2015

An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion

Zhaoyang Zhou; Yujiao Wu; Yongqing Yang; Minmin Du; Xiaojuan Zhang; Yan Guo; Chuanyou Li; Jian-Min Zhou

An analysis of Pseudomonas syringae AvrB-induced stomatal invasion uncovers an unexpected role of plasma membrane H+-ATPase in jasmonate signaling. Stomata are natural openings through which many pathogenic bacteria enter plants. Successful bacterial pathogens have evolved various virulence factors to promote stomatal opening. Here, we show that the Pseudomonas syringae type III effector protein AvrB induces stomatal opening and enhances bacterial virulence in a manner dependent on RPM1-INTERACTING4 (RIN4), which promotes stomatal opening by positively regulating the Arabidopsis plasma membrane H+-ATPase (AHA1), which is presumed to directly regulate guard cell turgor pressure. In support of a role of AHA1 in AvrB-induced stomatal opening, AvrB enhances ATPase activity in plants. Unexpectedly, AHA1 promotes the interaction between the jasmonate (JA) receptor CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM-DOMAIN (JAZ) proteins and enhances JA signaling. JA signaling is required for optimum stomatal infection in AHA1-active plants. Similarly, AvrB also induces the COI1-JAZ9 interaction and the degradation of multiple JAZ proteins. AvrB-induced stomatal opening and virulence require the canonical JA signaling pathway, which involves the COI1 and NAC transcription factors. The findings thus point to a previously unknown pathway exploited by P. syringae that acts upstream of COI1 to regulate JA signaling and stomatal opening.


Plant Physiology | 2015

SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5

Xiaona Zhou; Hongmei Hao; Yuguo Zhang; Yili Bai; Wenbo Zhu; Yunxia Qin; Feifei Yuan; Feiyi Zhao; Mengyao Wang; Jingjiang Hu; Hong Xu; Aiguang Guo; Huixian Zhao; Yang Zhao; Cuiling Cao; Yongqing Yang; Karen S. Schumaker; Yan Guo; Chang Gen Xie

A salt sensitive-like protein kinase and phosphorylation of its unique target affect ABA inhibition of seed germination. Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana).


Plant Physiology | 2014

A Calcium-Independent Activation of the Arabidopsis SOS2-Like Protein Kinase24 by Its Interacting SOS3-Like Calcium Binding Protein1

Huixin Lin; Wenming Du; Yongqing Yang; Karen S. Schumaker; Yan Guo

Calcium-independent protein kinase activity is important for inactivating Arabidopsis plasma membrane proton-translocating adenosine triphosphatase. The salt stress-induced SALT-OVERLY-SENSITIVE (SOS) pathway in Arabidopsis (Arabidopsis thaliana) involves the perception of a calcium signal by the SOS3 and SOS3-like CALCIUM-BINDING PROTEIN8 (SCaBP8) calcium sensors, which then interact with and activate the SOS2 protein kinase, forming a complex at the plasma membrane that activates the SOS1 Na+/H+ exchanger. It has recently been reported that phosphorylation of SCaBP proteins by SOS2-like protein kinases (PKSs) stabilizes the interaction between the two proteins as part of a regulatory mechanism that was thought to be common to all SCaBP and PKS proteins. Here, we report the calcium-independent activation of PKS24 by SCaBP1 and show that activation is dependent on interaction of PKS24 with the C-terminal tail of SCaBP1. However, unlike what has been found for other PKS-SCaBP pairs, multiple amino acids in SCaBP1 are phosphorylated by PKS24, and this phosphorylation is dependent on the interaction of the proteins through the PKS24 FISL motif and on the efficient activation of PKS24 by the C-terminal tail of SCaBP1. In addition, we show that Thr-211 and Thr-212, which are not common phosphorylation sites in the conserved PFPF motif found in most SCaBP proteins, are important for this activation. Finally, we also found that SCaBP1-regulated PKS24 kinase activity is important for inactivating the Arabidopsis plasma membrane proton-translocating adenosine triphosphatase. Together, these results suggest the existence of a novel SCaBP-PKS regulatory mechanism in plants.

Collaboration


Dive into the Yongqing Yang's collaboration.

Top Co-Authors

Avatar

Yan Guo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huixin Lin

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Jinfeng Zhao

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feiyi Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuguo Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunxia Qin

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Huapeng Zhou

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge