Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen S. Schumaker is active.

Publication


Featured researches published by Karen S. Schumaker.


The Plant Cell | 2002

Cell Signaling during Cold, Drought, and Salt Stress

Liming Xiong; Karen S. Schumaker; Jian-Kang Zhu

Low temperature, drought, and high salinity are common stress conditions that adversely affect plant growth and crop production. The cellular and molecular responses of plants to environmental stress have been studied intensively ([Thomashow, 1999][1]; [Hasegawa et al., 2000][2]). Understanding the


Proceedings of the National Academy of Sciences of the United States of America | 2002

Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3

Quan Sheng Qiu; Yan Guo; Margaret A. Dietrich; Karen S. Schumaker; Jian-Kang Zhu

Maintaining low levels of sodium ions in the cell cytosol is critical for plant growth and development. Biochemical studies suggest that Na+/H+ exchangers in the plasma membrane of plant cells contribute to cellular sodium homeostasis by transporting sodium ions out of the cell; however, these exchangers have not been identified at the molecular level. Genetic analysis has linked components of the salt overly sensitive pathway (SOS1–3) to salt tolerance in Arabidopsis thaliana. The predicted SOS1 protein sequence and comparisons of sodium ion accumulation in wild-type and sos1 plants suggest that SOS1 is involved directly in the transport of sodium ions across the plasma membrane. To demonstrate the transport capability of SOS1, we studied Na+/H+-exchange activity in wild-type and sos plants using highly purified plasma membrane vesicles. The results showed that plasma membrane Na+/H+-exchange activity was present in wild-type plants treated with 250 mM NaCl, but this transport activity was reduced by 80% in similarly treated sos1 plants. In vitro addition of activated SOS2 protein (a protein kinase) increased Na+/H+-exchange activity in salt-treated wild-type plants 2-fold relative to transport without added protein. However, the addition of activated SOS2 did not have any stimulatory effect on the exchange activity in sos1 plants. Although vesicles of sos2 and sos3 plants had reduced plasma membrane Na+/H+-exchange activity, transport activity in both increased with the addition of activated SOS2 protein. These results demonstrate that SOS1 contributes to plasma membrane Na+/H+ exchange and that SOS2 and SOS3 regulate SOS1 transport activity.


The Plant Cell | 2007

Arabidopsis protein kinase PKS5 inhibits the plasma membrane H +-ATPase by preventing interaction with 14-3-3 protein

Anja T. Fuglsang; Yan Guo; Tracey Ann Cuin; Quansheng Qiu; Chun-Peng Song; Kim A. Kristiansen; Katrine Bych; Alexander Schulz; Sergey Shabala; Karen S. Schumaker; Michael G. Palmgren; Jian-Kang Zhu

Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+-ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+-ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+-ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+-ATPase regulation.


Nature Genetics | 2013

An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions

Annabelle Haudry; Adrian E. Platts; Emilio Vello; Douglas R. Hoen; Mickael Leclercq; Robert J. Williamson; Ewa Forczek; Zoé Joly-Lopez; Joshua G. Steffen; Khaled M. Hazzouri; Ken Dewar; John R. Stinchcombe; Daniel J. Schoen; Xiaowu Wang; Jeremy Schmutz; Christopher D. Town; Patrick P. Edger; J. Chris Pires; Karen S. Schumaker; David E. Jarvis; Terezie Mandáková; Martin A. Lysak; Erik van den Bergh; M. Eric Schranz; Paul M. Harrison; Alan M. Moses; Thomas E. Bureau; Stephen I. Wright; Mathieu Blanchette

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.


Molecular and Cellular Biology | 2007

SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H+-ATPase and Upregulating Its Transport Activity

Giorgia Batelli; Paul E. Verslues; Fernanda Agius; Quansheng Qiu; Hiroaki Fujii; Songqin Pan; Karen S. Schumaker; Stefania Grillo; Jian-Kang Zhu

ABSTRACT The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance.


Plant Physiology | 2004

The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis

Deming Gong; Yan Guo; Karen S. Schumaker; Jian-Kang Zhu

During the course of its lifecycle, a plant may experience extremes of temperature and moisture, excesses and deficiencies of minerals, and challenges from herbivores and pathogens, all of which provide specific signals for altered plant growth and development. Ca2+ has been widely implicated as an


Plant Physiology | 2003

Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis

Quan Sheng Qiu; Bronwyn J. Barkla; Rosario Vera-Estrella; Jian-Kang Zhu; Karen S. Schumaker

In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.


Frontiers in Plant Science | 2013

The Reference Genome of the Halophytic Plant Eutrema salsugineum

Ruolin Yang; David E. Jarvis; Hao Chen; Mark A. Beilstein; Jane Grimwood; Jerry Jenkins; Shengqiang Shu; Simon Prochnik; Mingming Xin; Chuang Ma; Jeremy Schmutz; Rod A. Wing; Thomas Mitchell-Olds; Karen S. Schumaker; Xiangfeng Wang

Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species.


The Plant Cell | 2009

Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.

Huixin Lin; Yongqing Yang; Ruidang Quan; Imelda Mendoza; Yisheng Wu; Wenming Du; Shuangshuang Zhao; Karen S. Schumaker; José M. Pardo; Yan Guo

The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+ exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala, SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue, the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a critical component of SOS pathway regulation of salt tolerance in Arabidopsis.


The Plant Cell | 2004

Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for Its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis thaliana

Yan Guo; Quan Sheng Qiu; Francisco J. Quintero; José M. Pardo; Masaru Ohta; Changqing Zhang; Karen S. Schumaker; Jian-Kang Zhu

In Arabidopsis thaliana, the calcium binding protein Salt Overly Sensitive3 (SOS3) interacts with and activates the protein kinase SOS2, which in turn activates the plasma membrane Na+/H+ antiporter SOS1 to bring about sodium ion homeostasis and salt tolerance. Constitutively active alleles of SOS2 can be constructed in vitro by changing Thr168 to Asp in the activation loop of the kinase catalytic domain and/or by removing the autoinhibitory FISL motif from the C-terminal regulatory domain. We expressed various activated forms of SOS2 in Saccharomyces cerevisiae (yeast) and in A. thaliana and evaluated the salt tolerance of the transgenic organisms. Experiments in which the activated SOS2 alleles were coexpressed with SOS1 in S. cerevisiae showed that the kinase activity of SOS2 is partially sufficient for SOS1 activation in vivo, and higher kinase activity leads to greater SOS1 activation. Coexpression of SOS3 with SOS2 forms that retained the FISL motif resulted in more dramatic increases in salt tolerance. In planta assays showed that the Thr168-to-Asp–activated mutant SOS2 partially rescued the salt hypersensitivity in sos2 and sos3 mutant plants. By contrast, SOS2 lacking only the FISL domain suppressed the sos2 but not the sos3 mutation, whereas truncated forms in which the C terminus had been removed could not restore the growth of either sos2 or sos3 plants. Expression of some of the activated SOS2 proteins in wild-type A. thaliana conferred increased salt tolerance. These studies demonstrate that the protein kinase activity of SOS2 is partially sufficient for activation of SOS1 and for salt tolerance in vivo and in planta and that the kinase activity of SOS2 is limiting for plant salt tolerance. The results also reveal an essential in planta role for the SOS2 C-terminal regulatory domain in salt tolerance.

Collaboration


Dive into the Karen S. Schumaker's collaboration.

Top Co-Authors

Avatar

Yan Guo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinfeng Zhao

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huixin Lin

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge