Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongrong Zhang is active.

Publication


Featured researches published by Yongrong Zhang.


Infection and Immunity | 2011

Mouse Relapse Model of Clostridium difficile Infection

Xingmin Sun; Haiying Wang; Yongrong Zhang; Kevin Chen; Barbara J. Davis; Hanping Feng

ABSTRACT Clostridium difficile is the causative agent of primary and recurrent antibiotic-associated diarrhea and colitis in hospitalized patients. The disease is caused mainly by two exotoxins, TcdA and TcdB, produced by the bacteria. Recurrent C. difficile infection (CDI) constitutes one of the most significant clinical issues of this disease, occurs in more than 20% of patients after the first episode, and may be increasing in frequency. However, there is no well-established animal model of CDI relapse currently available for studying disease pathogenesis, prevention, and therapy. Here we report the establishment of a conventional mouse model of recurrence/relapse CDI. We found that the primary episode of CDI induced little or no protective antibody response against C. difficile toxins and mice continued shedding C. difficile spores. Antibiotic treatment of surviving mice induced a second episode of diarrhea, while a simultaneous reexposure of animals to C. difficile bacteria or spores elicited a full spectrum of CDI similar to that of the primary infection. Moreover, mice treated with immunosuppressive agents were prone to more severe and fulminant recurrent disease. Finally, utilizing this model, we demonstrated that vancomycin only delayed disease recurrence, whereas neutralizing polysera against both TcdA and TcdB completely protected mice against CDI relapse. In conclusion, we have established a mouse relapse CDI model that allows for future investigations of the role of the host immune response in the diseases pathogenesis and permits critical testing of new therapeutics targeting recurrent disease.


Infection and Immunity | 2012

A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.

Haiying Wang; Xingmin Sun; Yongrong Zhang; Shan Li; Kevin Chen; Lianfa Shi; Weijia Nie; Raj Kumar; Saul Tzipori; Jufang Wang; Tor C. Savidge; Hanping Feng

ABSTRACT The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.


The Journal of Infectious Diseases | 2012

Systemic Dissemination of Clostridium difficile Toxins A and B Is Associated With Severe, Fatal Disease in Animal Models

Jennifer A. Steele; Kevin Chen; Xingmin Sun; Yongrong Zhang; Haiying Wang; Saul Tzipori; Hanping Feng

BACKGROUND Clostridium difficile infection (CDI) can cause a wide range of disease, from mild diarrhea to fulminant systemic disease. The incidence of systemic CDI with fatal consequence has increased rapidly in recent years. METHODS Using an ultrasensitive cytotoxicity assay, we measured C. difficile toxin A (TcdA) and C. difficile toxin B (TcdB) in sera and body fluids of piglets and mice exposed to C. difficile to investigate the relationship between the presence of toxins in body fluids and systemic manifestations of CDI. RESULTS We found that both TcdA and TcdB disseminate systemically, with toxins present in the sera and body fluids of infected animals, and toxemia is significantly correlated with the development of systemic CDI. The systemic administration of neutralizing antibodies against both toxins blocked the development of systemic disease in mice. We measured cytokine concentrations in the sera of mice and piglets with systemic and nonsystemic CDI and found that proinflammatory mediators were considerably elevated in animals with systemic CDI. CONCLUSION Our study demonstrates the existence of a strong correlation between toxemia and the occurrence of systemic disease, supporting the hypothesis that systemic CDI is most likely due to the toxicity of TcdA and TcdB and the induction of proinflammatory cytokines by the toxins.


Infection and Immunity | 2015

Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab.

Zhiyong Yang; Jeremy Ramsey; Therwa Hamza; Yongrong Zhang; Shan Li; Harris G. Yfantis; Dong Lee; Lorraine D. Hernandez; Wolfgang Seghezzi; Jamie M. Furneisen; Nicole Davis; Alex G. Therien; Hanping Feng

ABSTRACT Clostridium difficile infection (CDI) represents the most prevalent cause of antibiotic-associated gastrointestinal infections in health care facilities in the developed world. Disease symptoms are caused by the two homologous exotoxins, TcdA and TcdB. Standard therapy for CDI involves administration of antibiotics that are associated with a high rate of disease recurrence, highlighting the need for novel treatment paradigms that target the toxins rather than the organism itself. A combination of human monoclonal antibodies, actoxumab and bezlotoxumab, directed against TcdA and TcdB, respectively, has been shown to decrease the rate of recurrence in patients treated with standard-of-care antibiotics. However, the exact mechanism of antibody-mediated protection is poorly understood. In this study, we show that the antitoxin antibodies are protective in multiple murine models of CDI, including systemic and local (gut) toxin challenge models, as well as primary and recurrent models of infection in mice. Systemically administered actoxumab-bezlotoxumab prevents both the damage to the gut wall and the inflammatory response, which are associated with C. difficile in these models, including in mice challenged with a strain of the hypervirulent ribotype 027. Furthermore, mutant antibodies (N297Q) that do not bind to Fcγ receptors provide a level of protection similar to that of wild-type antibodies, demonstrating that the mechanism of protection is through direct neutralization of the toxins and does not involve host effector functions. These data provide a mechanistic basis for the prevention of recurrent disease observed in CDI patients in clinical trials.


Infection and Immunity | 2015

Critical Roles of Clostridium difficile Toxin B Enzymatic Activities in Pathogenesis

Shan Li; Lianfa Shi; Zhiyong Yang; Yongrong Zhang; Gregorio Perez-Cordon; Tuxiong Huang; Jeremy Ramsey; Numan Oezguen; Tor C. Savidge; Hanping Feng

ABSTRACT TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (VHH) library raised against TcdB, we identified two VHH antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


PLOS ONE | 2013

A Segment of 97 Amino Acids within the Translocation Domain of Clostridium difficile Toxin B Is Essential for Toxicity

Yongrong Zhang; Lianfa Shi; Shan Li; Zhiyong Yang; Clive Standley; Zhong Yang; Ronghua ZhuGe; Tor C. Savidge; Xiaoning Wang; Hanping Feng

Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 – 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.


Science China-life Sciences | 2012

Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis

Yongrong Zhang; Jian Liu; Yong Wang; Qiaoyang Xian; LingYun Shao; Zhong Yang; XiaoNing Wang

This study investigated the therapeutic effects of interleukin (IL)-2 and granulocyte-macrophage colony-stimulating factor (GM-CSF) co-administrated with antibacterial agents isoniazid (INH) and rifampin (RIF) to treat a mouse model of tuberculosis (TB) infection. A drug-susceptible TB strain, H37Rv was used to infect mice and the effectiveness of IL-2 and GM-CSF was initially evaluated based on survival rate, bacterial counts in lungs and spleens and the pathological condition of the lungs. Next, the therapeutic effect of the immunotherapy regimen was assessed in multidrug-resistant strain OB35-infected mice. In the H37Rv infection model, IL-2 and GM-CSF monotherapies reduced bacterial numbers in the lungs by 0.82 (P<0.01) and 0.58 (P<0.05) lg colony-forming units (CFU), respectively, and in the spleens by 1.42 (P<0.01) and 1.22 (P<0.01) lg CFU, respectively, compared with the untreated group. Mice receiving immunotherapy developed fewer lesions in the lungs compared with mice receiving antibacterial therapy alone. In the OB35 infection model, immunotherapy with either cytokine resulted in a significant reduction of bacterial load in the lungs and spleens and less severe lesions in the lungs compared with the untreated or antibacterial therapy treated mice. Notably, mice receiving immunotherapy with both cytokines had a 30% survival rate which was higher than that in other treated groups, and had significantly less CFUs in the lungs and spleens (1.02 and 1.34 lg CFU) compared with antibacterial therapy alone (P<0.01). This study demonstrated that immunotherapy with both IL-2 and GM-CSF may be useful to treat multidrug resistant tuberculosis (MDR-TB).


Fems Immunology and Medical Microbiology | 2016

Intravenous adenovirus expressing a multi-specific, single-domain antibody neutralizing TcdA and TcdB protects mice from Clostridium difficile infection

Zhiyong Yang; Lianfa Shi; Hua Yu; Yongrong Zhang; Kevin Chen; Ashley Saint Fleur; Guang Bai; Hanping Feng

Clostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice. Since ABA has a short serum half-life, in this study a replication-deficient recombinant adenovirus expressing ABA was generated and the long-lasting expression of functional ABA was demonstrated in vitro and in vivo Mice transduced with one dose of the adenovirus displayed high levels of serum ABA for more than1 month and were fully protected against systemic toxin challenges. More importantly, the ABA delivered by the adenovirus protected mice from both primary and recurrent CDI. Thus, replication-deficient adenoviral vector may be used to deliver neutralizing antibodies against the toxins in order to prevent CDI and recurrence.


Gut microbes | 2015

Glucosyltransferase activity of Clostridium difficile Toxin B is essential for disease pathogenesis

Zhiyong Yang; Yongrong Zhang; Tuxiong Huang; Hanping Feng

Clostridium difficile TcdB harbors a glucosyltransferase that targets host Rho GTPases. However, the role of the enzyme activity in the induction of host intestinal disease has not been demonstrated. In this study, we established a mouse acute intestinal disease model by cecum injection of wild type and glucosyltransferase-deficient TcdB and a chronic model by delivering toxin intraluminally via engineered surrogate host Bacillus megaterium. We demonstrated, for the first time, that the glucosyltransferase activity of TcdB is essential for inducing disease symptoms and intestinal pathological responses that resemble human disease, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


Journal of Toxicology | 2012

Retargeting Clostridium difficile Toxin B to Neuronal Cells as a Potential Vehicle for Cytosolic Delivery of Therapeutic Biomolecules to Treat Botulism

Greice Krautz-Peterson; Yongrong Zhang; Kevin Chen; George A. Oyler; Hanping Feng; Charles B. Shoemaker

Botulinum neurotoxins (BoNTs) deliver a protease to neurons which can cause a flaccid paralysis called botulism. Development of botulism antidotes will require neuronal delivery of agents that inhibit or destroy the BoNT protease. Here, we investigated the potential of engineering Clostridium difficile toxin B (TcdB) as a neuronal delivery vehicle by testing two recombinant TcdB chimeras. For AGT-TcdB chimera, an alkyltransferase (AGT) was appended to the N-terminal glucosyltransferase (GT) of TcdB. Recombinant AGT-TcdB had alkyltransferase activity, and the chimera was nearly as toxic to Vero cells as wild-type TcdB, suggesting efficient cytosolic delivery of the AGT/GT fusion. For AGT-TcdB-BoNT/A-Hc, the receptor-binding domain (RBD) of TcdB was replaced by the equivalent RBD from BoNT/A (BoNT/A-Hc). AGT-TcdB-BoNT/A-Hc was >25-fold more toxic to neuronal cells and >25-fold less toxic to Vero cells than AGT-TcdB. Thus, TcdB can be engineered for cytosolic delivery of biomolecules and improved targeting of neuronal cells.

Collaboration


Dive into the Yongrong Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Chen

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Lianfa Shi

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Shan Li

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiying Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tor C. Savidge

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge