Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianfa Shi is active.

Publication


Featured researches published by Lianfa Shi.


Journal of Biological Chemistry | 1999

Nix and Nip3 Form a Subfamily of Pro-apoptotic Mitochondrial Proteins

Gao Chen; Jeannick Cizeau; Christine Vande Velde; Jae Hoon Park; Gracjan Bozek; James M. Bolton; Lianfa Shi; Don Dubik; Arnold H. Greenberg

We have identified Nix, a homolog of the E1B 19K/Bcl-2 binding and pro-apoptotic protein Nip3. Human and murine Nix have a 56 and 53% amino acid identity to human and murine Nip3, respectively. The carboxyl terminus of Nix, including a transmembrane domain, is highly homologous to Nip3 but it bears a longer and distinct asparagine/proline-rich N terminus. Human Nip3 maps to chromosome 14q11.2–q12, whereas Nix/BNip3L was found on 8q21. Nix encodes a 23.8-kDa protein but it is expressed as a 48-kDa protein, suggesting that it homodimerizes similarly to Nip3. Following transfection, Nix protein undergoes progressive proteolysis to an 11-kDa C-terminal fragment, which is blocked by the proteasome inhibitor lactacystin. Nix colocalizes with the mitochondrial matrix protein HSP60, and removal of the putative transmembrane domain (TM) results in general cytoplasmic and nuclear expression. When transiently expressed, Nix and Nip3 but not TM deletion mutants rapidly activate apoptosis. Nix can overcome the suppressers Bcl-2 and Bcl-XL, although high levels of Bcl-XL expression will inhibit apoptosis. We propose that Nix and Nip3 form a new subfamily of pro-apoptotic mitochondrial proteins.


Journal of Biological Chemistry | 1996

Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE.

Suyue Wang; Masayuki Miura; Yong-keun Jung; Hong Zhu; Valeria Gagliardini; Lianfa Shi; Arnold H. Greenberg; Junying Yuan

We report here the isolation and characterization of a new member of the ice/ced-3 family of cell death genes, named ich-3. The predicted amino acid sequence of Ich-3 protein shares 54% identity with murine interleukin-1β converting enzyme (ICE). Overexpression of ich-3 in Rat-1 and HeLa cells induces apoptosis, which can be inhibited by CrmA and Bcl-2. The mRNA and proteins of ich-3 are dramatically induced in vivo upon stimulation with lipopolysaccharide, an inducer of septic shock. The ich-3 gene product can be cleaved by cytotoxic T cells granule serine protease granzyme B, suggesting that Ich-3 may mediate apoptosis induced by granzyme B. Ich-3 does not process proIL-1β directly but does promote proIL-1β processing by ICE. These results suggest that Ich-3 may play a very important role in apoptosis and inflammatory responses and may be an upstream regulator of ICE.


Journal of Biological Chemistry | 1997

Activation of Caspase-2 in Apoptosis

Honglin Li; Louise Bergeron; Vince Cryns; Mark S. Pasternack; Hong Zhu; Lianfa Shi; Arnold H. Greenberg; Junying Yuan

Members of the CED-3/interleukin-1β-converting enzyme (ICE) protease (caspase) family are synthesized as proforms, which are proteolytically cleaved and activated during apoptosis. We report here that caspase-2 (ICH-1/NEDD-2), a member of the ICE family, is activated during apoptosis by another ICE member, a caspase-3 (CPP32)-like protease(s). When cells are induced to undergo apoptosis, endogenous caspase-2 is first cleaved into three fragments of 32–33 kDa and 14 kDa, which are then further processed into 18- and 12-kDa active subunits. Up to 50 μm N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD-CHO), a caspase-3-preferred peptide inhibitor, inhibits caspase-2 activation and DNA fragmentation in vivo, but does not prevent loss of mitochondrial function, while higher concentrations of DEVD-CHO (>50 μm) inhibit both. In comparison, although the activity of caspase-3 is very sensitive to the inhibition of DEVD-CHO (<50 nm), inhibition of caspase-3 activation as marked by processing of the proform requires more than 100 μmDEVD-CHO. Our results suggest that the first cleavage of caspase-2 is accomplished by a caspase-3-like activity, and other ICE-like proteases less sensitive to DEVD-CHO may be responsible for activation of caspase-3 and loss of mitochondrial function.


Nature Medicine | 2011

Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins

Tor C. Savidge; Petri Urvil; Numan Oezguen; Kausar Ali; Aproteem Choudhury; Vinay Acharya; Iryna V Pinchuk; Alfredo G. Torres; Robert D. English; John E. Wiktorowicz; Michael J. Loeffelholz; Raj Kumar; Lianfa Shi; Weijia Nie; Werner Braun; Bo Herman; Alfred Hausladen; Hanping Feng; Jonathan S. Stamler; Charalabos Pothoulakis

The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP6). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP6- and inositol pyrophosphate (InsP7)-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP6 enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.


Infection and Immunity | 2012

A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.

Haiying Wang; Xingmin Sun; Yongrong Zhang; Shan Li; Kevin Chen; Lianfa Shi; Weijia Nie; Raj Kumar; Saul Tzipori; Jufang Wang; Tor C. Savidge; Hanping Feng

ABSTRACT The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.


Journal of Immunology | 2005

Granzyme B Binds to Target Cells Mostly by Charge and Must Be Added at the Same Time as Perforin to Trigger Apoptosis

Lianfa Shi; Dennis Keefe; Enrique Durand; Hanping Feng; Dong Zhang; Judy Lieberman

Perforin (PFN) delivery of granzymes (Gzm) into the target cell at the immunological synapse is the major pathway for inducing apoptosis of virus-infected cells and tumors. A validated model for how PFN delivers Gzm into the cytosol is still lacking. PFN was originally thought to work by forming pores in the target cell plasma membrane that allow Gzm entry. This model was questioned when it was shown that GzmB is endocytosed without PFN. Moreover, apoptosis could be triggered by adding PFN to washed cells that have previously endocytosed GzmB. In this study, we show that GzmB binds to the plasma membrane mostly via nonspecific charge interactions. Washing in saline does not remove bound Gzm. However, if externally bound GzmB is completely removed, subsequent addition of PFN does not release previously endocytosed GzmB and does not trigger apoptosis. Therefore, PFN must be coendocytosed with GzmB to deliver it into the cytosol.


EMBO Reports | 2006

Granzyme A, which causes single‐stranded DNA damage, targets the double‐strand break repair protein Ku70

Pengcheng Zhu; Dong Zhang; Dipanjan Chowdhury; Denis Martinvalet; Dennis Keefe; Lianfa Shi; Judy Lieberman

Granzyme A (GzmA) induces caspase‐independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double‐strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg301, disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA‐mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster‐deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects—facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single‐stranded, not double‐stranded, DNA damage, and GzmA‐induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA‐induced cell death, which are blocked when GzmA proteolyses Ku70.


Fems Immunology and Medical Microbiology | 2013

Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol

Shan Li; Lianfa Shi; Zhiyong Yang; Hanping Feng

Clostridium difficile virulence requires secretion of two exotoxins: TcdA and TcdB. The precise mechanism of toxin uptake and delivery is undefined, but current models predict that the cysteine protease domain (CPD)-mediated autocleavage and release of glucosyltransferase domain (GTD) are crucial for intoxication. To determine the importance of CPD-mediated cleavage to TcdB cytotoxicity, we generated two mutant toxins--TcdB-C698S and TcdB-H653A--and assayed their abilities to intoxicate cells. The CPD mutants include an intact GTD but lack the cysteine protease activity. The mutants had reduced potency in that their effect on cells was delayed and required higher concentrations than wild-type TcdB. They did eventually cause cell rounding, glucosylation of Rho GTPases, and apoptosis that was indistinguishable from that caused by TcdB. Although the mutant toxins caused a complete cell rounding, they failed to release their GTD into cytosol, whereas wild-type TcdB displayed significant autocleavage and release of GTD. We conclude that the cysteine protease-mediated autocleavage and release of GTD is not a prerequisite for the cytotoxic activity of TcdB, but rather limits the potency and speed of Rho GTPase glucosylation. Our findings revise and refine the current model for the mode of the action and cellular trafficking of TcdB.


Infection and Immunity | 2015

Critical Roles of Clostridium difficile Toxin B Enzymatic Activities in Pathogenesis

Shan Li; Lianfa Shi; Zhiyong Yang; Yongrong Zhang; Gregorio Perez-Cordon; Tuxiong Huang; Jeremy Ramsey; Numan Oezguen; Tor C. Savidge; Hanping Feng

ABSTRACT TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (VHH) library raised against TcdB, we identified two VHH antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


PLOS ONE | 2013

A Segment of 97 Amino Acids within the Translocation Domain of Clostridium difficile Toxin B Is Essential for Toxicity

Yongrong Zhang; Lianfa Shi; Shan Li; Zhiyong Yang; Clive Standley; Zhong Yang; Ronghua ZhuGe; Tor C. Savidge; Xiaoning Wang; Hanping Feng

Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 – 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.

Collaboration


Dive into the Lianfa Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shan Li

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tor C. Savidge

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Yu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Judy Lieberman

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge