Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoo-Ah Kim is active.

Publication


Featured researches published by Yoo-Ah Kim.


PLOS Computational Biology | 2011

Identifying Causal Genes and Dysregulated Pathways in Complex Diseases

Yoo-Ah Kim; Stefan Wuchty; Teresa M. Przytycka

In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.


PLOS Computational Biology | 2012

Chapter 5: Network Biology Approach to Complex Diseases

Dong-Yeon Cho; Yoo-Ah Kim; Teresa M. Przytycka

Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.


Genome Research | 2014

Comparative validation of the D. melanogaster modENCODE transcriptome annotation

Zhen Xia Chen; David Sturgill; Jiaxin Qu; Huaiyang Jiang; Soo Park; Nathan Boley; Ana Maria Suzuki; Anthony R. Fletcher; David C. Plachetzki; Peter C. FitzGerald; Carlo G. Artieri; Joel Atallah; Olga Barmina; James B. Brown; Kerstin P. Blankenburg; Emily Clough; Abhijit Dasgupta; Sai Gubbala; Yi Han; Joy Jayaseelan; Divya Kalra; Yoo-Ah Kim; Christie Kovar; Sandra L. Lee; Mingmei Li; James D. Malley; John H. Malone; Tittu Mathew; Nicolas R Mattiuzzo; Mala Munidasa

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


Bioinformatics | 2015

MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types

Yoo-Ah Kim; Dong-Yeon Cho; Phuong Dao; Teresa M. Przytycka

MOTIVATION The data gathered by the Pan-Cancer initiative has created an unprecedented opportunity for illuminating common features across different cancer types. However, separating tissue-specific features from across cancer signatures has proven to be challenging. One of the often-observed properties of the mutational landscape of cancer is the mutual exclusivity of cancer driving mutations. Even though studies based on individual cancer types suggested that mutually exclusive pairs often share the same functional pathway, the relationship between across cancer mutual exclusivity and functional connectivity has not been previously investigated. RESULTS We introduce a classification of mutual exclusivity into three basic classes: within tissue type exclusivity, across tissue type exclusivity and between tissue type exclusivity. We then combined across-cancer mutual exclusivity with interactions data to uncover pan-cancer dysregulated pathways. Our new method, Mutual Exclusivity Module Cover (MEMCover) not only identified previously known Pan-Cancer dysregulated subnetworks but also novel subnetworks whose across cancer role has not been appreciated well before. In addition, we demonstrate the existence of mutual exclusivity hubs, putatively corresponding to cancer drivers with strong growth advantages. Finally, we show that while mutually exclusive pairs within or across cancer types are predominantly functionally interacting, the pairs in between cancer mutual exclusivity class are more often disconnected in functional networks.


Frontiers in Genetics | 2013

Bridging the gap between genotype and phenotype via network approaches

Yoo-Ah Kim; Teresa M. Przytycka

In the last few years we have witnessed tremendous progress in detecting associations between genetic variations and complex traits. While genome-wide association studies have been able to discover genomic regions that may influence many common human diseases, these discoveries created an urgent need for methods that extend the knowledge of genotype-phenotype relationships to the level of the molecular mechanisms behind them. To address this emerging need, computational approaches increasingly utilize a pathway-centric perspective. These new methods often utilize known or predicted interactions between genes and/or gene products. In this review, we survey recently developed network based methods that attempt to bridge the genotype-phenotype gap. We note that although these methods help narrow the gap between genotype and phenotype relationships, these approaches alone cannot provide the precise details of underlying mechanisms and current research is still far from closing the gap.


BMC Biology | 2010

Network integration meets network dynamics

Teresa M. Przytycka; Yoo-Ah Kim

Molecular interaction networks provide a window on the workings of the cell. However, combining various types of networks into one coherent large-scale dynamic model remains a formidable challenge. A recent paper in BMC Systems Biology describes a promising step in this direction.


Physical Biology | 2011

Modeling Information Flow in Biological Networks

Yoo-Ah Kim; Jozef H. Przytycki; Stefan Wuchty; Teresa M. Przytycka

Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.


ad hoc networks | 2012

Fault-tolerant monitor placement for out-of-band wireless sensor network monitoring

Xian Chen; Yoo-Ah Kim; Bing Wang; Wei Wei; Zhijie Jerry Shi; Yuan Song

Abstract Monitoring a sensor network to quickly detect faults is important for maintaining the health of the network. Out-of-band monitoring, i.e., deploying dedicated monitors and transmitting monitoring traffic using a separate channel, does not require instrumenting sensor nodes, and hence is flexible (can be added on top of any application) and energy conserving (not consuming resources of the sensor nodes). In this paper, we study fault-tolerant out-of-band monitoring for wireless sensor networks. Our goal is to place a minimum number of monitors in a sensor network so that all sensor nodes are monitored by k distinct monitors, and each monitor serves no more than w sensor nodes. We prove that this problem is NP-hard. For small-scale network, we formulate the problem as an Integer Linear Programming (ILP) problem, and obtain the optimal solution. For large-scale network, the ILP is not applicable, and we propose two algorithms to solve it. The first one is a ln( kn ) approximation algorithm, where n is the number of sensor nodes. The second is a simple heuristic scheme that has much shorter running time. We evaluate our algorithms using extensive simulation. In small-scale networks, the latter two algorithms provide results close to the optimal solution from the ILP for relatively dense networks. In large-scale networks, the performance of these two algorithms are similar, and for relatively dense networks, the number of monitors required by both algorithms is close to a lower bound.


pacific symposium on biocomputing | 2012

Module cover - a new approach to genotype-phenotype studies.

Yoo-Ah Kim; Raheleh Salari; Stefan Wuchty; Teresa M. Przytycka

Uncovering and interpreting phenotype/genotype relationships are among the most challenging open questions in disease studies. Set cover approaches are explicitly designed to provide a representative set for diverse disease cases and thus are valuable in studies of heterogeneous datasets. At the same time pathway-centric methods have emerged as key approaches that significantly empower studies of genotype-phenotype relationships. Combining the utility of set cover techniques with the power of network-centric approaches, we designed a novel approach that extends the concept of set cover to network modules cover. We developed two alternative methods to solve the module cover problem: (i) an integrated method that simultaneously determines network modules and optimizes the coverage of disease cases. (ii) a two-step method where we first determined a candidate set of network modules and subsequently selected modules that provided the best coverage of the disease cases. The integrated method showed superior performance in the context of our application. We demonstrated the utility of the module cover approach for the identification of groups of related genes whose activity is perturbed in a coherent way by specific genomic alterations, allowing the interpretation of the heterogeneity of cancer cases.


Bioinformatics | 2016

WeSME: uncovering mutual exclusivity of cancer drivers and beyond

Yoo-Ah Kim; Sanna Madan; Teresa M. Przytycka

Motivation: Mutual exclusivity is a widely recognized property of many cancer drivers. Knowledge about these relationships can provide important insights into cancer drivers, cancer‐driving pathways and cancer subtypes. It can also be used to predict new functional interactions between cancer driving genes and uncover novel cancer drivers. Currently, most of mutual exclusivity analyses are preformed focusing on a limited set of genes in part due to the computational cost required to rigorously compute P‐values. Results: To reduce the computing cost and perform less restricted mutual exclusivity analysis, we developed an efficient method to estimate P‐values while controlling the mutation rates of individual patients and genes similar to the permutation test. A comprehensive mutual exclusivity analysis allowed us to uncover mutually exclusive pairs, some of which may have relatively low mutation rates. These pairs often included likely cancer drivers that have been missed in previous analyses. More importantly, our results demonstrated that mutual exclusivity can also provide information that goes beyond the interactions between cancer drivers and can, for example, elucidate different mutagenic processes in different cancer groups. In particular, including frequently mutated, long genes such as TTN in our analysis allowed us to observe interesting patterns of APOBEC activity in breast cancer and identify a set of related driver genes that are highly predictive of patient survival. In addition, we utilized our mutual exclusivity analysis in support of a previously proposed model where APOBEC activity is the underlying process that causes TP53 mutations in a subset of breast cancer cases. Availability and Implementation: http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#wesme Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Yoo-Ah Kim's collaboration.

Top Co-Authors

Avatar

Teresa M. Przytycka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stefan Wuchty

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bing Wang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Dong-Yeon Cho

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xian Chen

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Damian Wojtowicz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Sturgill

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emily Clough

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Phuong Dao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wei Wei

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge