Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damian Wojtowicz is active.

Publication


Featured researches published by Damian Wojtowicz.


Nature Structural & Molecular Biology | 2013

Transcription-dependent dynamic supercoiling is a short-range genomic force

Fedor Kouzine; Ashutosh Gupta; Laura Baranello; Damian Wojtowicz; Khadija Ben-Aissa; Juhong Liu; Teresa M. Przytycka; David Levens

Transcription has the capacity to mechanically modify DNA topology, DNA structure and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitts lymphoma cells by using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kilobases upstream of the start sites of active genes. Low- and high-output promoters handled this torsional stress differently, as shown by using inhibitors of transcription and topoisomerases and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high-output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.


Cell | 2013

Global regulation of promoter melting in naïve lymphocytes

Fedor Kouzine; Damian Wojtowicz; Arito Yamane; Wolfgang Resch; Kyong-Rim Kieffer-Kwon; Russell W. Bandle; Steevenson Nelson; Hirotaka Nakahashi; Parirokh Awasthi; Lionel Feigenbaum; Hervé Menoni; Jan H.J. Hoeijmakers; Wim Vermeulen; Hui Ge; Teresa M. Przytycka; David Levens; Rafael Casellas

Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.


Cell | 2016

RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription

Laura Baranello; Damian Wojtowicz; Kairong Cui; Devaiah Bn; Chung Hj; Chan-Salis Ky; Guha R; Wilson K; Zhang X; Zhang H; Piotrowski J; Thomas Cj; Singer Ds; Pugh Bf; Pommier Y; Teresa M. Przytycka; Fedor Kouzine; Lewis Ba; Keji Zhao; David Levens

We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.


International Journal of Molecular Sciences | 2014

DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

Laura Baranello; Fedor Kouzine; Damian Wojtowicz; Kairong Cui; Teresa M. Przytycka; Keji Zhao; David Levens

Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2)-poisoning agent etoposide (ETO). Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.


PLOS Computational Biology | 2012

Teasing apart translational and transcriptional components of stochastic variations in eukaryotic gene expression.

Raheleh Salari; Damian Wojtowicz; Jie Zheng; David Levens; Yitzhak Pilpel; Teresa M. Przytycka

The intrinsic stochasticity of gene expression leads to cell-to-cell variations, noise, in protein abundance. Several processes, including transcription, translation, and degradation of mRNA and proteins, can contribute to these variations. Recent single cell analyses of gene expression in yeast have uncovered a general trend where expression noise scales with protein abundance. This trend is consistent with a stochastic model of gene expression where mRNA copy number follows the random birth and death process. However, some deviations from this basic trend have also been observed, prompting questions about the contribution of gene-specific features to such deviations. For example, recent studies have pointed to the TATA box as a sequence feature that can influence expression noise by facilitating expression bursts. Transcription-originated noise can be potentially further amplified in translation. Therefore, we asked the question of to what extent sequence features known or postulated to accompany translation efficiency can also be associated with increase in noise strength and, on average, how such increase compares to the amplification associated with the TATA box. Untangling different components of expression noise is highly nontrivial, as they may be gene or gene-module specific. In particular, focusing on codon usage as one of the sequence features associated with efficient translation, we found that ribosomal genes display a different relationship between expression noise and codon usage as compared to other genes. Within nonribosomal genes we found that sequence high codon usage is correlated with increased noise relative to the average noise of proteins with the same abundance. Interestingly, by projecting the data on a theoretical model of gene expression, we found that the amplification of noise strength associated with codon usage is comparable to that of the TATA box, suggesting that the effect of translation on noise in eukaryotic gene expression might be more prominent than previously appreciated.


Nucleic Acids Research | 2014

Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation

Xiangjun Du; E. Michael Gertz; Damian Wojtowicz; Dina Zhabinskaya; David Levens; Craig J. Benham; Alejandro A. Schäffer; Teresa M. Przytycka

While individual non-B DNA structures have been shown to impact gene expression, their broad regulatory role remains elusive. We utilized genomic variants and expression quantitative trait loci (eQTL) data to analyze genome-wide variation propensities of potential non-B DNA regions and their relation to gene expression. Independent of genomic location, these regions were enriched in nucleotide variants. Our results are consistent with previously observed mutagenic properties of these regions and counter a previous study concluding that G-quadruplex regions have a reduced frequency of variants. While such mutagenicity might undermine functionality of these elements, we identified in potential non-B DNA regions a signature of negative selection. Yet, we found a depletion of eQTL-associated variants in potential non-B DNA regions, opposite to what might be expected from their proposed regulatory role. However, we also observed that genes downstream of potential non-B DNA regions showed higher expression variation between individuals. This coupling between mutagenicity and tolerance for expression variability of downstream genes may be a result of evolutionary adaptation, which allows reconciling mutagenicity of non-B DNA structures with their location in functionally important regions and their potential regulatory role.


PLOS Computational Biology | 2017

BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions

Phuong Dao; Yoo-Ah Kim; Damian Wojtowicz; Sanna Madan; Roded Sharan; Teresa M. Przytycka

The analysis of the mutational landscape of cancer, including mutual exclusivity and co-occurrence of mutations, has been instrumental in studying the disease. We hypothesized that exploring the interplay between co-occurrence, mutual exclusivity, and functional interactions between genes will further improve our understanding of the disease and help to uncover new relations between cancer driving genes and pathways. To this end, we designed a general framework, BeWith, for identifying modules with different combinations of mutation and interaction patterns. We focused on three different settings of the BeWith schema: (i) BeME-WithFun, in which the relations between modules are enriched with mutual exclusivity, while genes within each module are functionally related; (ii) BeME-WithCo, which combines mutual exclusivity between modules with co-occurrence within modules; and (iii) BeCo-WithMEFun, which ensures co-occurrence between modules, while the within module relations combine mutual exclusivity and functional interactions. We formulated the BeWith framework using Integer Linear Programming (ILP), enabling us to find optimally scoring sets of modules. Our results demonstrate the utility of BeWith in providing novel information about mutational patterns, driver genes, and pathways. In particular, BeME-WithFun helped identify functionally coherent modules that might be relevant for cancer progression. In addition to finding previously well-known drivers, the identified modules pointed to other novel findings such as the interaction between NCOR2 and NCOA3 in breast cancer. Additionally, an application of the BeME-WithCo setting revealed that gene groups differ with respect to their vulnerability to different mutagenic processes, and helped us to uncover pairs of genes with potentially synergistic effects, including a potential synergy between mutations in TP53 and the metastasis related DCC gene. Overall, BeWith not only helped us uncover relations between potential driver genes and pathways, but also provided additional insights on patterns of the mutational landscape, going beyond cancer driving mutations. Implementation is available at https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/software/bewith.html


Physical Biology | 2016

Correlated rigid modes in protein families.

Deborah A. Striegel; Damian Wojtowicz; Teresa M. Przytycka; Vipul Periwal

A great deal of evolutionarily conserved information is contained in genomes and proteins. Enormous effort has been put into understanding protein structure and developing computational tools for protein folding, and many sophisticated approaches take structure and sequence homology into account. Several groups have applied statistical physics approaches to extracting information about proteins from sequences alone. Here, we develop a new method for sequence analysis based on first principles, in information theory, in statistical physics and in Bayesian analysis. We provide a complete derivation of our approach and we apply it to a variety of systems, to demonstrate its utility and its limitations. We show in some examples that phylogenetic alignments of amino-acid sequences of families of proteins imply the existence of a small number of modes that appear to be associated with correlated global variation. These modes are uncovered efficiently in our approach by computing a non-perturbative effective potential directly from the alignment. We show that this effective potential approaches a limiting form inversely with the logarithm of the number of sequences. Mapping symbol entropy flows along modes to underlying physical structures shows that these modes arise due to correlated compensatory adjustments. In the protein examples, these occur around functional binding pockets.


PLOS Computational Biology | 2016

Ups and Downs of Poised RNA Polymerase II in B-Cells.

Phuong Dao; Damian Wojtowicz; Steevenson Nelson; David Levens; Teresa M. Przytycka

Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5′ end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated “on demand”. Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation.


bioRxiv | 2018

Hidden Markov Models Lead to Higher Resolution Maps of Mutation Signature Activity in Cancer

Xiaoqing Huang; Itay Sason; Damian Wojtowicz; Yoo-Ah Kim; Mark D. M. Leiserson; Teresa M. Przytycka; Roded Sharan

Knowing the activity of the mutational processes shaping a cancer genome may provide insight into tumorigenesis and personalized therapy. It is thus important to uncover the characteristic signatures of active mutational processes in patients from their patterns of single base substitutions. However, mutational processes do not act uniformly on the genome and are biased by factors such as the genome’s chromatin structure or replication origins. These factors may lead to statistical dependencies among neighboring mutations, calling for modeling approaches that can account for such dependencies to better estimate mutational process activities. Here we develop the first sequence-dependent models for mutation signatures. We apply these models to characterize genomic and other factors that influence the activity of previously validated mutation signatures in breast cancer. We find that our tool, SigMa, can accurately assign genomic mutations to mutation signatures, yielding assignments that are of higher likelihood than those obtained with models that assume independence between signatures and align better with current biological knowledge. Our analysis resolves a controversy related to the dependency of APOBEC signatures on replication time and links Signatures 18 and 30 to oxidative damage. Modeling the sequential dependencies of mutation signatures leads to improved estimates of mutation signature activity both at the tumor-level and within specific genomic regions, yielding higher resolution maps of mutation signature activity in cancer.

Collaboration


Dive into the Damian Wojtowicz's collaboration.

Top Co-Authors

Avatar

Teresa M. Przytycka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Levens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fedor Kouzine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura Baranello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steevenson Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arito Yamane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Striegel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dong-Yeon Cho

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge