Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoon Kim is active.

Publication


Featured researches published by Yoon Kim.


The Journal of Neuroscience | 2008

Excitatory actions of GABA in the suprachiasmatic nucleus.

Hee Joo Choi; C. Justin Lee; Analyne M. Schroeder; Yoon Kim; Seung Hoon Jung; Jeong Sook Kim; Do Young Kim; Eun Ju Son; Hee Chul Han; Seung Kil Hong; Christopher S. Colwell; Yang In Kim

Neurons in the suprachiasmatic nucleus (SCN) are responsible for the generation of circadian oscillations, and understanding how these neurons communicate to form a functional circuit is a critical issue. The neurotransmitter GABA and its receptors are widely expressed in the SCN where they mediate cell-to-cell communication. Previous studies have raised the possibility that GABA can function as an excitatory transmitter in adult SCN neurons during the day, but this work is controversial. In the present study, we first tested the hypothesis that GABA can evoke excitatory responses during certain phases of the daily cycle by broadly sampling how SCN neurons respond to GABA using extracellular single-unit recording and gramicidin-perforated-patch recording techniques. We found that, although GABA inhibits most SCN neurons, some level of GABA-mediated excitation was present in both dorsal and ventral regions of the SCN, regardless of the time of day. These GABA-evoked excitatory responses were most common during the night in the dorsal SCN region. The Na+-K+-2Cl− cotransporter (NKCC) inhibitor, bumetanide, prevented these excitatory responses. In individual neurons, the application of bumetanide was sufficient to change GABA-evoked excitation to inhibition. Calcium-imaging experiments also indicated that GABA-elicited calcium transients in SCN cells are highly dependent on the NKCC isoform 1 (NKCC1). Finally, Western blot analysis indicated that NKCC1 expression in the dorsal SCN is higher in the night. Together, this work indicates that GABA can play an excitatory role in communication between adult SCN neurons and that this excitation is critically dependent on NKCC1.


The Journal of Neuroscience | 2011

Chronic Hyperosmotic Stress Converts GABAergic Inhibition into Excitation in Vasopressin and Oxytocin Neurons in the Rat

Jeong Sook Kim; Woong Kim; Young Beom Kim; Yeon Lee; Yoon Kim; Feng Yan Shen; Seung Won Lee; Dawon Park; Hee Joo Choi; Jinyoung Hur; Joong Jean Park; Hee Chul Han; Christopher S. Colwell; Young Wuk Cho; Yang In Kim

In mammals, the increased secretion of arginine–vasopressin (AVP) (antidiuretic hormone) and oxytocin (natriuretic hormone) is a key physiological response to hyperosmotic stress. In this study, we examined whether chronic hyperosmotic stress weakens GABAA receptor-mediated synaptic inhibition in rat hypothalamic magnocellular neurosecretory cells (MNCs) secreting these hormones. Gramicidin-perforated recordings of MNCs in acute hypothalamic slices prepared from control rats and ones subjected to the chronic hyperosmotic stress revealed that this challenge not only attenuated the GABAergic inhibition but actually converted it into excitation. The hyperosmotic stress caused a profound depolarizing shift in the reversal potential of GABAergic response (EGABA) in MNCs. This EGABA shift was associated with increased expression of Na+–K+–2Cl− cotransporter 1 (NKCC1) in MNCs and was blocked by the NKCC inhibitor bumetanide as well as by decreasing NKCC activity through a reduction of extracellular sodium. Blocking central oxytocin receptors during the hyperosmotic stress prevented the switch to GABAergic excitation. Finally, intravenous injection of the GABAA receptor antagonist bicuculline lowered the plasma levels of AVP and oxytocin in rats under the chronic hyperosmotic stress. We conclude that the GABAergic responses of MNCs switch between inhibition and excitation in response to physiological needs through the regulation of transmembrane Cl− gradients.


European Journal of Neuroscience | 2005

Voltage‐gated calcium channels play crucial roles in the glutamate‐induced phase shifts of the rat suprachiasmatic circadian clock

Do Young Kim; Hee Joo Choi; Jeong Sook Kim; Yoon Kim; Do Ung Jeong; Hyung Cheul Shin; Mi Jin Kim; Hee Chul Han; Seung Kil Hong; Yang In Kim

The resetting of the circadian clock based on photic cues delivered by the glutamatergic retinohypothalamic tract is an important process helping mammals to function adaptively to the daily light–dark cycle. To see if the photic resetting relies on voltage‐gated Ca2+ channels (VGCCs), we examined the effects of VGCC blockers on the glutamate‐induced phase shifts of circadian firing activity rhythms of suprachiasmatic nucleus (SCN) neurons in hypothalamic slices. First, we found that a cocktail of amiloride, nimodipine and ω‐conotoxin MVIIC (T‐, L‐ and NPQ‐type VGCC antagonists, respectively) completely blocked both phase delays and advances, which were, respectively, induced by glutamate application in early and late night. Next, we discovered that: (i) amiloride and another T‐type VGCC antagonist, mibefradil, completely obstructed the delays without affecting the advances; (ii) nimodipine completely blocked the advances while having less impact on delays; and (iii) ω‐conotoxin MVIIC blocked largely, if not entirely, both delays and advances. Subsequent whole‐cell recordings revealed that T‐type Ca2+ currents in neurons in the ventrolateral, not dorsomedial, region of the SCN were larger during early than late night, whereas L‐type Ca2+ currents did not differ from early to late night in both regions. These results indicate that VGCCs play important roles in glutamate‐induced phase shifts, T‐type being more important for phase delays and L‐type being so for phase advances. Moreover, the results point to the possibility that a nocturnal modulation of T‐type Ca2+ current in retinorecipient neurons is related to the differential involvement of T‐type VGCC in phase delays and advances.


Neurobiology of Aging | 2011

Peroxiredoxin II preserves cognitive function against age-linked hippocampal oxidative damage

Sun Uk Kim; Mei‑Hua Jin; Yoon Kim; Sang Hee Lee; Yee Sook Cho; Kyoung Joo Cho; Kyu Sun Lee; Yang In Kim; Gyung Whan Kim; Jin-Man Kim; Tae-Hoon Lee; Young Lee; Minho Shong; Hyung Chun Kim; Kyu Tae Chang; Dae Yeul Yu; Dong Seok Lee

Reactive oxygen species (ROS), routinely produced in biological reactions, contribute to both normal aging and age-related decline in cognitive function. However, little is known regarding the involvement of specific antioxidants in the underlying mechanism(s). Here, we examined if peroxiredoxin II (Prx II) scavenges intracellular ROS that cause age-dependent mitochondrial decay in hippocampal CA1 pyramidal neurons and subsequent impairment of learning and memory. Age-dependent mitochondrial ROS generation and long-term potentiation (LTP) decline were more prominent in hippocampal neurons in Prx II(-/-) than in wild-type mice. Additionally, Prx II(-/-) mice failed to activate synaptic plasticity-related cellular signaling pathways involving CREB, CaMKII, and ERK, or to maintain functional integrity of their mitochondria. Dietary vitamin E alleviated Prx II deficiency-related deficits, including mitochondrial decay and CREB signaling, resulting in restoration of the abrupt cognitive decline in aged Prx II(-/-) mice. These results suggest that Prx II help maintain hippocampal synaptic plasticity against age-related oxidative damage.


Circulation Research | 2013

GABAergic Excitation of Vasopressin Neurons Possible Mechanism Underlying Sodium-Dependent Hypertension

Young Beom Kim; Yoon Kim; Woong Kim; Feng Yan Shen; Seung Won Lee; Hyun Joo Chung; Jeong Sook Kim; Hee Chul Han; Christopher S. Colwell; Yang In Kim

Rationale: Increased arginine-vasopressin (AVP) secretion is a key physiological response to hyperosmotic stress and may be part of the mechanism by which high-salt diets induce or exacerbate hypertension.nnObjective: Using deoxycorticosterone acetate-salt hypertension model rats, we sought to test the hypothesis that changes in GABAA receptor–mediated inhibition in AVP-secreting magnocellular neurons contribute to the generation of Na+-dependent hypertension.nnMethods and Results: In vitro gramicidin-perforated recordings in the paraventricular and supraoptic nuclei revealed that the GABAergic inhibition in AVP-secreting neurons was converted into excitation in this model, because of the depolarization of GABA equilibrium potential. Meanwhile, in vivo extracellular recordings in the supraoptic nuclei showed that the GABAergic baroreflexive inhibition of magnocellular neurons was transformed to excitation, so that baroreceptor activation may increase AVP release. The depolarizing GABA equilibrium potential shift in AVP-secreting neurons occurred progressively over weeks of deoxycorticosterone acetate-salt treatment along with gradual increases in plasma AVP and blood pressure. Furthermore, the shift was associated with changes in chloride transporter expression and partially reversed by bumetanide (Na+-K+-2Cl– cotransporter inhibitor). Intracerebroventricular bumetanide administration during deoxycorticosterone acetate-salt treatment hindered the development of hypertension and rise in plasma AVP level. Muscimol (GABAA agonist) microinjection into the supraoptic nuclei in hypertensive rats increased blood pressure, which was prevented by previous intravenous V1a AVP antagonist injection.nnConclusions: We conclude that the inhibitory-to-excitatory switch of GABAA receptor–mediated transmission in AVP neurons contributes to the generation of Na+-dependent hypertension by increasing AVP release. We speculate that normalizing the GABA equilibrium potential may have some utility in treating Na+-dependent hypertension.nn# Novelty and Significance {#article-title-52}Rationale: Increased arginine-vasopressin (AVP) secretion is a key physiological response to hyperosmotic stress and may be part of the mechanism by which high-salt diets induce or exacerbate hypertension. Objective: Using deoxycorticosterone acetate-salt hypertension model rats, we sought to test the hypothesis that changes in GABAA receptor–mediated inhibition in AVP-secreting magnocellular neurons contribute to the generation of Na+-dependent hypertension. Methods and Results: In vitro gramicidin-perforated recordings in the paraventricular and supraoptic nuclei revealed that the GABAergic inhibition in AVP-secreting neurons was converted into excitation in this model, because of the depolarization of GABA equilibrium potential. Meanwhile, in vivo extracellular recordings in the supraoptic nuclei showed that the GABAergic baroreflexive inhibition of magnocellular neurons was transformed to excitation, so that baroreceptor activation may increase AVP release. The depolarizing GABA equilibrium potential shift in AVP-secreting neurons occurred progressively over weeks of deoxycorticosterone acetate-salt treatment along with gradual increases in plasma AVP and blood pressure. Furthermore, the shift was associated with changes in chloride transporter expression and partially reversed by bumetanide (Na+-K+-2Cl– cotransporter inhibitor). Intracerebroventricular bumetanide administration during deoxycorticosterone acetate-salt treatment hindered the development of hypertension and rise in plasma AVP level. Muscimol (GABAA agonist) microinjection into the supraoptic nuclei in hypertensive rats increased blood pressure, which was prevented by previous intravenous V1a AVP antagonist injection. Conclusions: We conclude that the inhibitory-to-excitatory switch of GABAA receptor–mediated transmission in AVP neurons contributes to the generation of Na+-dependent hypertension by increasing AVP release. We speculate that normalizing the GABA equilibrium potential may have some utility in treating Na+-dependent hypertension.


Biochemical and Biophysical Research Communications | 2016

A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.

Jie Zheng; Kyung Ah Choi; Phil Jun Kang; Solji Hyeon; Suhyun Kwon; Jai Hee Moon; Insik Hwang; Yang In Kim; Yoon Kim; Byung Sun Yoon; Gyuman Park; Jang-Bo Lee; Sunghoi Hong; Seungkwon You

The generation of induced neural stem cells (iNSCs) from somatic cells using defined factors provides new avenues for basic research and cell therapies for various neurological diseases, such as Parkinsons disease, Huntingtons disease, and spinal cord injuries. However, the transcription factors used for direct reprogramming have the potential to cause unexpected genetic modifications, which limits their potential application in cell therapies. Here, we show that a combination of four chemical compounds resulted in cells directly acquiring a NSC identity; we termed these cells chemically-induced NSCs (ciNSCs). ciNSCs expressed NSC markers (Pax6, PLZF, Nestin, Sox2, and Sox1) and resembled NSCs in terms of their morphology, self-renewal, gene expression profile, and electrophysiological function when differentiated into the neuronal lineage. Moreover, ciNSCs could differentiate into several types of mature neurons (dopaminergic, GABAergic, and cholinergic) as well as astrocytes and oligodendrocytes inxa0vitro. Taken together, our results suggest that stably expandable and functional ciNSCs can be directly reprogrammed from mouse fibroblasts using a combination of small molecules without any genetic manipulation, and will provide a new source of cells for cellular replacement therapy of neurodegenerative diseases.


Biomaterials | 2015

Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments

Gyuman Park; Byung Sun Yoon; Yoon Kim; Seung Cheol Choi; Jai Hee Moon; Suhyun Kwon; Jihye Hwang; Wonjin Yun; Jong Ho Kim; Chi Yeon Park; Do Sun Lim; Yang In Kim; Chil Hwan Oh; Seungkwon You

The possibility of controlling cell fates by overexpressing specific transcription factors has led to numerous studies in stem cell research. Small molecules can be used, instead of transcription factors, to induce the de-differentiation of somatic cells or to induce pluripotent cells (iPSCs). Here we reported that combinations of small molecules could convert mouse fibroblasts into cardiomyocyte-like cell without requiring transcription factor expression. Treatment with specific combinations of small molecules that are enhancer for iPSC induction converted mouse fibroblasts into spontaneously contracting, cardiac troponin T-positive, cardiomyocyte-like cells. We specifically identified five small molecules that can induce mouse fibroblasts to form these cardiomyocyte-like cells. These cells are similar to primary cardiomyocytes in terms of marker gene expression, epigenetic status of cardiac-specific genes, and subcellular structure. Our findings indicate that lineage conversion can be induced not only by transcription factors, but also by small molecules.


Journal of Preventive Medicine and Public Health | 2011

Effect of repeated public releases on cesarean section rates.

Won Mo Jang; Sang Jun Eun; Chae-Eun Lee; Yoon Kim

OBJECTIVESnPublic release of and feedback (here after public release) on institutional (clinics and hospitals) cesarean section rates has had the effect of reducing cesarean section rates. However, compared to the isolated intervention, there was scant evidence of the effect of repeated public releases (RPR) on cesarean section rates. The objectives of this study were to evaluate the effect of RPR for reducing cesarean section rates.nnnMETHODSnFrom January 2003 to July 2007, the nationwide monthly institutional cesarean section rates data (1,951,303 deliveries at 1194 institutions) were analyzed. We used autoregressive integrated moving average (ARIMA) time-series intervention models to assess the effect of the RPR on cesarean section rates and ordinal logistic regression model to determine the characteristics of the change in cesarean section rates.nnnRESULTSnAmong four RPR, we found that only the first one (August 29, 2005) decreased the cesarean section rate (by 0.81 percent) and continued to have an impact period through the last observation in May 2007. Baseline cesarean section rates (OR, 4.7; 95% CI, 3.1 to 7.1) and annual number of deliveries (OR, 2.8; 95% CI, 1.6 to 4.7) of institutions in the upper third of each category at before first intervention had a significant contribution to the decrease of cesarean section rates.nnnCONCLUSIONSnWe could not found the evidence that RPR has had the significant effect of reducing cesarean section rates. Institutions with upper baseline cesarean section rates and annual number of deliveries were more responsive to RPR.


Molecular Brain | 2015

GABAergic inhibition is weakened or converted into excitation in the oxytocin and vasopressin neurons of the lactating rat

Seung Won Lee; Young Beom Kim; Jeong Sook Kim; Woong Kim; Yoon Kim; Hee Chul Han; Christopher S. Colwell; Young-Wuk Cho; Yang In Kim

BackgroundIncreased secretion of oxytocin and arginine vasopressin (AVP) from hypothalamic magnocellular neurosecretory cells (MNCs) is a key physiological response to lactation. In the current study, we sought to test the hypothesis that the GABAA receptor-mediated inhibition of MNCs is altered in lactating rats.ResultsGramicidin-perforated recordings in the rat supraoptic nucleus (SON) slices revealed that the reversal potential of GABAA receptor-mediated response (EGABA) of MNCs was significantly depolarized in the lactating rats as compared to virgin animals. The depolarizing EGABA shift was much larger in rats in third, than first, lactation such that GABA exerted an excitatory, instead of inhibitory, effect in most of the MNCs of these multiparous rats. Immunohistochemical analyses confirmed that GABAergic excitation was found in both AVP and oxytocin neurons within the MNC population. Pharmacological experiments indicated that the up-regulation of the Cl− importer Na+-K+-2Cl− cotransporter isotype 1 and the down-regulation of the Cl− extruder K+-Cl− cotransporter isotype 2 were responsible for the depolarizing shift of EGABA and the resultant emergence of GABAergic excitation in the MNCs of the multiparous rats.ConclusionWe conclude that, in primiparous rats, the GABAergic inhibition of MNCs is weakened during the period of lactation while, in multiparous females, GABA becomes excitatory in a majority of the cells. This reproductive experience-dependent alteration of GABAergic transmission may help to increase the secretion of oxytocin and AVP during the period of lactation.


European Journal of Neuroscience | 2015

Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R‐CaV1.3‐RyR pathway in the mouse

Yoon Kim; Young Beom Kim; Woong Kim; Bo Eun Yoon; Feng Yan Shen; Seung Won Lee; Tuck Wah Soong; Hee Chul Han; Christopher S. Colwell; C. Justin Lee; Yang In Kim

Histamine, a neurotransmitter/neuromodulator implicated in the control of arousal state, exerts a potent phase‐shifting effect on the circadian clock in the rodent suprachiasmatic nucleus (SCN). In this study, the mechanisms by which histamine resets the circadian clock in the mouse SCN were investigated. As a first step, Ca2+‐imaging techniques were used to demonstrate that histamine increases intracellular Ca2+ concentration ([Ca2+]i) in acutely dissociated SCN neurons and that this increase is blocked by the H1 histamine receptor (H1R) antagonist pyrilamine, the removal of extracellular Ca2+ and the L‐type Ca2+ channel blocker nimodipine. The histamine‐induced Ca2+ transient is reduced, but not blocked, by application of the ryanodine receptor (RyR) blocker dantrolene. Immunohistochemical techniques indicated that CaV1.3 L‐type Ca2+ channels are expressed mainly in the somata of SCN cells along with the H1R, whereas CaV1.2 channels are located primarily in the processes. Finally, extracellular single‐unit recordings demonstrated that the histamine‐elicited phase delay of the circadian neural activity rhythm recorded from SCN slices is blocked by pyrilamine, nimodipine and the knockout of CaV1.3 channel. Again, application of dantrolene reduced but did not block the histamine‐induced phase delays. Collectively, these results indicate that, to reset the circadian clock, histamine increases [Ca2+]i in SCN neurons by activating CaV1.3 channels through H1R, and secondarily by causing Ca2+‐induced Ca2+ release from RyR‐mediated internal stores.

Collaboration


Dive into the Yoon Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge