Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoon Myung is active.

Publication


Featured researches published by Yoon Myung.


ACS Nano | 2010

Composition-Tuned ZnO−CdSSe Core−Shell Nanowire Arrays

Yoon Myung; Dong Myung Jang; Tae Kwang Sung; Yong Jei Sohn; Gyeong Bok Jung; Yong Jae Cho; Han Sung Kim; Jeunghee Park

Vertically aligned ZnO--CdSSe core-shell nanocable arrays were synthesized with a controlled composition and shell thickness (10-50 nm) by the chemical vapor deposition on the pregrown ZnO nanowire arrays. They consisted of a composition-tuned single-crystalline wurtzite structure CdS1-xSex (x=0, 0.5, and 1) shell whose [0001] direction was aligned along the [0001] wire axis of the wurtzite ZnO core. The analysis of structural and optical properties shows the formation of Zn containing alloy in the interface region between the ZnO core and shell, which can facilitate the growth of single-crystalline shell layers by reducing both the lattice mismatch and the number of defect sites. In contrast, the TiO2 (rutile) nanowire array can form the polycrystalline shell under the same condition. The photoelectrochemical cell using the ZnO--CdS photoelectrode exhibits a higher photocurrent and hydrogen generation rate than that using the TiO2-CdS one. We suggest that the formation of the CdZnSSe intermediate layers contributes to the higher photoelectrochemical cell performance of the ZnO--CdSSe nanocables.


ACS Nano | 2013

Tetragonal phase germanium nanocrystals in lithium ion batteries.

Yong Jae Cho; Hyungsoon Im; Han Sung Kim; Yoon Myung; Seung Hyuk Back; Young Rok Lim; Chan Su Jung; Dong Myung Jang; Jeunghee Park; Eun Hee Cha; Won Il Cho; Fazel Shojaei; Hong Seok Kang

Various germanium-based nanostructures have recently demonstrated outstanding lithium ion storage ability and are being considered as the most promising candidates to substitute current carbonaceous anodes of lithium ion batteries. However, there is limited understanding of their structure and phase evolution during discharge/charge cycles. Furthermore, the theoretical model of lithium insertion still remains a challenging issue. Herein, we performed comparative studies on the cycle-dependent lithiation/delithiation processes of germanium (Ge), germanium sulfide (GeS), and germanium oxide (GeO2) nanocrystals (NCs). We synthesized the NCs using a convenient gas phase laser photolysis reaction and attained an excellent reversible capacity: 1100-1220 mAh/g after 100 cycles. Remarkably, metastable tetragonal (ST12) phase Ge NCs were constantly produced upon lithiation and became the dominant phase after a few cycles, completely replacing the original phase. The crystalline ST12 phase persisted through 100 cycles. First-principles calculations on polymorphic lithium-intercalated structures proposed that the ST12 phase Ge12Lix structures at x ≥ 4 become more thermodynamically stable than the cubic phase Ge8Lix structures with the same stoichiometry. The production and persistence of the ST12 phase can be attributed to a stronger binding interaction of the lithium atoms compared to the cubic phase, which enhanced the cycling performance.


Journal of Materials Chemistry | 2011

CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes

Tae Kwang Sung; Jun Ha Kang; Dong Myung Jang; Yoon Myung; Gyeong Bok Jung; Han Sung Kim; Chan Su Jung; Yong Jae Cho; Jeunghee Park; Chang-Lyoul Lee

Complete composition-tuned CdSxSe1−x alloy layers (avg. thickness = 50 nm) were deposited on pre-grown TiO2 nanowires by the thermal vapor transport of CdS/CdSe powders, producing core–shell nanocable arrays. CdSxSe1−x alloy nanowires were also synthesized with full composition tuning by the same method for comparison. The CdSSe nanowires consisted of Se-rich and S-rich pseudo binary phases, while the nanocable shell consisted of more complex multinary phases including CdSe and CdS. Remarkably, unique CdS–CdSSe–CdSe multishell structures were produced in the Se-rich composition range. The photoelectrochemical (PEC) cells fabricated using the as-grown nanocable arrays show higher solar photocurrents and hydrogen generation rates for the Se-rich shelled TiO2 nanocable arrays. This suggests that the CdS–CdSSe–CdSe multishell structures increase greatly the PEC performance by producing novel band alignment for efficient electron–hole separation following enhanced visible-range photon absorption.


Nano Letters | 2008

Three-dimensional structure of helical and zigzagged nanowires using electron tomography.

Han Sung Kim; Seon Oh Hwang; Yoon Myung; Jeunghee Park; Seung Yong Bae; Jae-Pyoung Ahn

Electron tomography and high-resolution transmission electron microscopy were used to characterize the unique three-dimensional structures of helical or zigzagged GaN, ZnGa2O4, and Zn2SnO4 nanowires. The GaN nanowires adopt a helical structure that consists of six equivalent <011> growth directions with the axial [0001] direction. We also confirmed that the ZnGa2O4 nanosprings have four equivalent <011> growth directions with the [001] axial direction. The zigzagged Zn2SnO4 nanowires consisted of linked rhombohedrons having the side edges matched to the <110> direction and the [111] axial direction.


Chemical Communications | 2013

Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries

Yong Jae Cho; Hyungsoon Im; Yoon Myung; Chang Hyun Kim; Han Sung Kim; Seung Hyuk Back; Young Rok Lim; Chan Su Jung; Dong Myung Jang; Jeunghee Park; Eun Hee Cha; Sung Ho Choo; Min Seob Song; Won Il Cho

Germanium sulfide (GeS and GeS2) nanoparticles were synthesized by novel gas-phase laser photolysis and subsequent thermal annealing. They showed excellent cycling performance for lithium ion batteries, with a maximum capacity of 1010 mA h g(-1) after 100 cycles. Metastable tetragonal phase Ge nanoparticles were suggested as active materials for a reversible lithium insertion-extraction process.


Physical Chemistry Chemical Physics | 2013

Germanium–tin alloy nanocrystals for high-performance lithium ion batteries

Yong Jae Cho; Chang Hyun Kim; Hyungsoon Im; Yoon Myung; Han Sung Kim; Seung Hyuk Back; Young Rok Lim; Chan Su Jung; Dong Myung Jang; Jeunghee Park; Sang Hoo Lim; Eun Hee Cha; Ki Yoon Bae; Min Seob Song; Won Il Cho

Germanium-tin (Ge(1-x)Sn(x)) alloy nanocrystals were synthesized using a gas-phase laser photolysis reaction of tetramethyl germanium and tetramethyl tin. A composition tuning was achieved using the partial pressure of precursors in a closed reactor. For x < 0.1, cubic phase alloy nanocrystals were exclusively produced without separation of the tetragonal phase Sn metal. In the range of x = 0.1-0.4, unique Ge(1-x)Sn(x)-Sn alloy-metal hetero-junction nanocrystals were synthesized, where the Sn metal domain becomes dominant with x. Thin graphitic carbon layers usually sheathed the nanocrystals. We investigated the composition-dependent electrochemical properties of these nanocrystals as anode materials of lithium ion batteries. Incorporation of Sn (x = 0.05) significantly increased the capacities (1010 mA h g(-1) after 50 cycles) and rate capabilities, which promises excellent electrode materials for the development of high-performance lithium batteries.


Optics Express | 2010

Geometry-dependent terahertz emission of silicon nanowires

Gyeong Bok Jung; Yong Jae Cho; Yoon Myung; Han Sung Kim; Young Suk Seo; Jeunghee Park; Chul Kang

THz emission was observed from the vertically aligned silicon nanowire (Si NW) arrays, upon the excitation using a fs Ti-sapphire laser pulse (800 nm). The Si NWs (length = 0.3 approximately 9 microm) were synthesized by the chemical etching of n-type silicon substrates. The THz emission exhibits significant length dependence; the intensity increases sharply up to a length of 3 mum and then almost saturates. Their efficient THz emission is attributed to strong local field enhancement by coherent surface plasmons, with distinctive geometry dependence.


ACS Applied Materials & Interfaces | 2015

Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction.

Wei-Ning Wang; Fei Wu; Yoon Myung; Dariusz M. Niedzwiedzki; Hyungsoon Im; Jeunghee Park; Parag Banerjee; Pratim Biswas

Large arrays of massively parallel (10(8) cm(-2)) CuO nanowires were surface engineered with dense ZnO islands using a few pulsed cycles of atomic layer deposition (ALD). These nanowires were subjected to UV-vis radiation-based CO2 photoreduction under saturated humidity (CO2 + H2O mixture) conditions. We monitored CO2 to CO conversion, indicating the viability of these nanostructures as potential photocatalysts. High-resolution transmission electron microscopy and atomic force microscopy indicated an island growth mechanism of ZnO epitaxially depositing on pristine, single crystal CuO nanowire surface. Photoluminescence and transient absorption spectroscopy showed a very high density of defects on these ZnO islands which trapped electrons and enhanced their lifetimes. Peak CO conversion (1.98 mmol/g-cat/hr) and quantum efficiency (0.0035%) were observed in our setup when the ZnO islands impinged each other at 1.4 nm (8 cycles of ALD) diameter; at which point ZnO island perimeter lengths maximized as well. A mechanism whereby simultaneous H2O oxidation and CO2 reduction occurred in the active perimeter region between CuO nanowire and ZnO islands is proposed to explain the observed photoconversion of CO2 to CO.


ACS Nano | 2012

Charge-Selective Surface-Enhanced Raman Scattering Using Silver and Gold Nanoparticles Deposited on Silicon–Carbon Core–Shell Nanowires

Sun Young Baik; Yong Jae Cho; Young Rok Lim; Hyungsoon Im; Dong Myung Jang; Yoon Myung; Jeunghee Park; Hong Seok Kang

The deposition of silver (Ag) or gold (Au) nanoparticles (NPs) on vertically aligned silicon-carbon (Si-C) core-shell nanowires (NWs) produces sensitive substrates for surface-enhanced Raman spectroscopy (SERS). The undoped and 30% nitrogen (N)-doped graphitic layers of the C shell (avg thickness of 20 nm) induce a higher sensitivity toward negatively (-) and positively (+) charged dye molecules, respectively, showing remarkable charge selectivity. The Ag NPs exhibit higher charge selectivity than the Au NPs. The Ag NPs deposited on p- and n-type Si NWs also exhibit (-) and (+) charge selectivity, respectively, which is higher than that of the Au NPs. The X-ray photoelectron spectroscopy analysis indicates that the N-doped graphitic layers donate more electrons to the metal NPs than the undoped ones. More distinct electron transfer occurs to the Ag NPs than to the Au NPs. First principles calculations of the graphene-metal adducts suggest that the large electron transfer capacity of the N-doped graphitic layers is due to the formation of a N→Ag coordinate bond involving the lone pair electrons of the N atoms. We propose that the more (-) charged NPs on the N-doped graphitic layers prefer the adsorption of (+) charged dyes, enhancing the SERS intensity. The charge selectivity of the Si NW substrates can also be rationalized by the greater electron transfer from the n-type Si to the metal NPs.


RSC Advances | 2013

Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals

Hyungsoon Im; Yoon Myung; Yong Jae Cho; Chang Hyun Kim; Han Sung Kim; Seung Hyuk Back; Chan Su Jung; Dong Myung Jang; Young Rok Lim; Jeunghee Park; Jae-Pyoung Ahn

We synthesized polytypic tin sulfide, SnS, Sn2S3, and SnS2 nanocrystals, by means of novel gas-phase laser photolysis of tetramethyl tin and hydrogen sulfide. A facile composition tuning through the pressure of precursors (addition of dimethyl selenium) yields a series of orthorhombic phase SnX and hexagonal phase SnX2, where X = SxSe1−x with 0 ≤ x ≤ 1. Various polytypic hybrids such as SnS–Sn2S3–SnS2, SnS–SnS2, Sn2S3–SnS2, and SnSe–SnSe2 were synthesized. This resulted in the ability to tune the band gap over a wide range (1.0–2.3 eV). Their photon energy conversion properties were investigated by fabricating photodetector devices using the nanocrystal-reduced graphene oxide nanocomposites. The enhanced photoconversion efficiency was observed from the polytypic hybrid nanostructures. This original synthesis method for tin chalcogenide nanocrystals is expected to help expand applications in high-performance energy conversion systems.

Collaboration


Dive into the Yoon Myung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Parag Banerjee

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sriya Banerjee

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Fei Wu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge