Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoonseong Park is active.

Publication


Featured researches published by Yoonseong Park.


BMC Genomics | 2015

Uncovering the novel characteristics of Asian honey bee, Apis cerana , by whole genome sequencing

Je Won Jung; Beom-Soon Choi; Murukarthick Jayakodi; Jeong-Soo Lee; Jong-Sung Lim; Yeisoo Yu; Yong-Soo Choi; Myeong-Lyeol Lee; Yoonseong Park; Ik-Young Choi; Tae-Jin Yang; Owain R. Edwards; Gyoungju Nah; Hyung Wook Kwon

BackgroundThe honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana.ResultsUsing de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes.ConclusionsThis first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution

Yoonseong Park; Young-Joon Kim; Michael E. Adams

G-protein coupled receptors (GPCRs) are ancient, ubiquitous sensors vital to environmental and physiological signaling throughout organismal life. With the publication of the Drosophila genome, numerous “orphan” GPCRs have become available for functional analysis. Here we characterize two groups of GPCRs predicted as receptors for peptides with a C-terminal amino acid sequence motif consisting of −PRXamide (PRXa). Assuming ligand-receptor coevolution, two alternative hypotheses were constructed and tested. The insect PRXa peptides are evolutionarily related to the vertebrate peptide neuromedin U (NMU), or are related to arginine vasopressin (AVP), both of which have PRXa motifs. Seven Drosophila GPCRs related to receptors for NMU and AVP were cloned and expressed in Xenopus oocytes for functional analysis. Four Drosophila GPCRs in the NMU group (CG11475, CG8795, CG9918, CG8784) are activated by insect PRXa pyrokinins, (−FXPRXamide), Cap2b-like peptides (−FPRXamide), or ecdysis triggering hormones (−PRXamide). Three Drosophila GPCRs in the vasopressin receptor group respond to crustacean cardioactive peptide (CCAP), corazonin, or adipokinetic hormone (AKH), none of which are PRXa peptides. These findings support a theory of coevolution for NMU and Drosophila PRXa peptides and their respective receptors.


Journal of Insect Science | 2006

RNAi Knockdown of a Salivary Transcript Leading to Lethality in the Pea Aphid, Acyrthosiphon pisum

Navdeep S. Mutti; Yoonseong Park; John C. Reese; Gerald R. Reeck

Abstract Injection of siRNA (small interfering RNA) into parthenogenetic adult pea aphids (Acyrthosiphon pisum) is shown here to lead to depletion of a target salivary gland transcript. The siRNA was generated from double stranded RNA that covered most of the open reading frame of the transcript, which we have called Coo2. The Coo2 transcript level decreases dramatically over a 3-day period after injection of siRNA. With a lag of 1 to 2 days, the siCoo2-RNA injected insects died, on average 8 days before the death of control insects injected with siRNA for green fluorescent protein. It appears, therefore, that siRNA injections into adults will be a useful tool in studying the roles of individual transcripts in aphid salivary glands and suggests that siCoo2-RNA injections can be a useful positive control in such studies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

Navdeep S. Mutti; Joe Louis; Loretta K. Pappan; Kirk L. Pappan; Khurshida Begum; Ming-Shun Chen; Yoonseong Park; Neal T. Dittmer; Jeremy L. Marshall; John C. Reese; Gerald R. Reeck

In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid–plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.


Frontiers in Neuroendocrinology | 2008

A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum ☆

Frank Hauser; Giuseppe Cazzamali; Michael Williamson; Yoonseong Park; Bin Li; Yoshiaki Tanaka; Reinhard Predel; Susanne Neupert; Joachim Schachtner; Peter Verleyen; Cornelis J. P. Grimmelikhuijzen

Insect neurohormones (biogenic amines, neuropeptides, and protein hormones) and their G protein-coupled receptors (GPCRs) play a central role in the control of behavior, reproduction, development, feeding and many other physiological processes. The recent completion of several insect genome projects has enabled us to obtain a complete inventory of neurohormone GPCRs in these insects and, by a comparative genomics approach, to analyze the evolution of these proteins. The red flour beetle Tribolium castaneum is the latest addition to the list of insects with a sequenced genome and the first coleopteran (beetle) to be sequenced. Coleoptera is the largest insect order and about 30% of all animal species living on earth are coleopterans. Some coleopterans are severe agricultural pests, which is also true for T. castaneum, a global pest for stored grain and other dried commodities for human consumption. In addition, T. castaneum is a model for insect development. Here, we have investigated the presence of neurohormone GPCRs in Tribolium and compared them with those from the fruit fly Drosophila melanogaster (Diptera) and the honey bee Apis mellifera (Hymenoptera). We found 20 biogenic amine GPCRs in Tribolium (21 in Drosophila; 19 in the honey bee), 48 neuropeptide GPCRs (45 in Drosophila; 35 in the honey bee), and 4 protein hormone GPCRs (4 in Drosophila; 2 in the honey bee). Furthermore, we identified the likely ligands for 45 of these 72 Tribolium GPCRs. A highly interesting finding in Tribolium was the occurrence of a vasopressin GPCR and a vasopressin peptide. So far, the vasopressin/GPCR couple has not been detected in any other insect with a sequenced genome (D. melanogaster and six other Drosophila species, Anopheles gambiae, Aedes aegypti, Bombyx mori, and A. mellifera). Tribolium lives in very dry environments. Vasopressin in mammals is the major neurohormone steering water reabsorption in the kidneys. Its presence in Tribolium, therefore, might be related to the animals need to effectively control water reabsorption. Other striking differences between Tribolium and the other two insects are the absence of the allatostatin-A, kinin, and corazonin neuropeptide/receptor couples and the duplications of other hormonal systems. Our survey of 340 million years of insect neurohormone GPCR evolution shows that neuropeptide/receptor couples can easily duplicate or disappear during insect evolution. It also shows that Drosophila is not a good representative of all insects, because several of the hormonal systems that we now find in Tribolium do not exist in Drosophila.


Mechanisms of Development | 2008

Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum

Yasuyuki Arakane; Bin Li; Subbaratnam Muthukrishnan; Richard W. Beeman; Karl J. Kramer; Yoonseong Park

Ecdysis behavior in arthropods is driven by complex interactions among multiple neuropeptide signaling systems. To understand the roles of neuropeptides and their receptors in the red flour beetle, Tribolium castaneum, we performed systemic RNA interference (RNAi) experiments utilizing post-embryonic injections of double-stranded (ds) RNAs corresponding to ten gene products representing four different peptide signaling pathways: eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon. Behavioral deficiencies and developmental arrests occurred as follows: RNAi of (1) eh or eth disrupted preecdysis behavior and prevented subsequent ecdysis behavior; (2) ccap interrupted ecdysis behavior; and (3) bursicon subunits resulted in wrinkled elytra due to incomplete wing expansion, but there was no effect on cuticle tanning or viability. RNAi of genes encoding receptors for those peptides produced phenocopies comparable to those of their respective cognate neuropeptides, except in those cases where more than one receptor was identified. The phenotypes resulting from neuropeptide RNAi in Tribolium differ substantially from phenotypes of the respective Drosophila mutants. Results from this study suggest that the functions of neuropeptidergic systems that drive innate ecdysis behavior have undergone significant changes during the evolution of arthropods.


FEBS Letters | 1999

Molecular cloning and biological activity of ecdysis-triggering hormones in Drosophila melanogaster

Yoonseong Park; Dusan Zitnan; Sarjeet S. Gill; Michael E. Adams

Ecdysis‐triggering hormones (ETH) initiate a defined behavioral sequence leading to shedding of the insect cuticle. We have identified eth, a gene encoding peptides with ETH‐like structure and biological activity in Drosophila melanogaster. The open reading frame contains three putative peptides based on canonical endopeptidase cleavage and amidation sites. Two of the predicted peptides (DrmETH1 and DrmETH2) prepared by chemical synthesis induce premature eclosion upon injection into pharate adults. The promoter region of the gene contains a direct repeat ecdysteroid response element. Identification of eth in Drosophila provides opportunities for genetic manipulation of endocrine and behavioral events underlying a stereotypic behavior.


Insect Biochemistry and Molecular Biology | 2009

Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum

Yasuyuki Arakane; Radhika Dixit; Khurshida Begum; Yoonseong Park; Charles A. Specht; Hans Merzendorfer; Karl J. Kramer; Subbaratnam Muthukrishnan; Richard W. Beeman

The expression profiles of nine genes encoding chitin deacetylase (CDA)-like proteins were studied during development and in various tissues of the red flour beetle, Tribolium castaneum, by RT-PCR. TcCDA1, TcCDA2 and TcCDA5 were expressed throughout all stages of development, while TcCDA6-9 were expressed predominantly during larval feeding stages. In situ hybridization experiments revealed that both TcCDA1 and TcCDA2 were expressed in epidermal cells. Polyclonal antibody to TcCDA1 detected an immunoreactive protein in larval tracheae. TcCDA6 through TcCDA9, which belong to a distinct subgroup of gut-specific CDAs, were transcribed in the cells lining the midgut, including epithelial cells. TcCDA3 was expressed in the thoracic muscles, whereas TcCDA4 was expressed in early imaginal appendages. To study the function(s) of individual TcCDA genes, double-stranded RNAs (dsRNA) specific for each gene were injected into insects at different developmental stages and the phenotypes were monitored. No visible phenotypic changes were observed after injection of dsRNAs for TcCDA3 to 9, whereas injection of dsRNAs for TcCDA1 or TcCDA2 affected all types of molts, including larval-larval, larval-pupal and pupal-adult. Insects treated with these dsRNAs could not shed the old cuticle and were trapped in their exuviae. Interestingly, unique and very dissimilar adult phenotypes were observed after injection of dsRNAs that specifically down-regulated either of the two alternatively spliced transcripts of TcCDA2, namely TcCDA2a or TcCDA2b. These results reveal functional specialization among T. castaneum CDA genes and splice variants.


Journal of Biological Chemistry | 2003

Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster.

Yoonseong Park; Young-Joon Kim; Vincent Dupriez; Michael E. Adams

Insect ecdysis is a hormonally programmed physiological sequence that enables insects to escape their old cuticle at the end of each developmental stage. The immediate events leading to ecdysis, which are initiated upon release of ecdysis-triggering hormones (ETH) into the bloodstream, include respiratory inflation and sequential stereotypic behaviors that facilitate shedding of the cuticle. Here we report that the Drosophila geneCG5911 encodes two functionally distinct subtypes of G protein-coupled receptors through alternative splicing (CG5911a and CG5911b) that respond preferentially to ecdysis-triggering hormones of flies and moths. These subtypes show differences in ligand sensitivity and specificity, suggesting that they may play separate roles in ETH signaling. At significantly higher concentrations (>100-fold), certain insect and vertebrate peptides also activate these receptors, providing evidence that CG5911 is evolutionarily related to the thyrotropin-releasing hormone and neuromedin U receptors. The ETH signaling system in insects is a vital system that provides opportunities for the construction of models for the molecular basis of stereotypic animal behavior as well as a target for the design of more sophisticated insect-selective pest control strategies.


Insect Biochemistry and Molecular Biology | 2008

Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle

Michael J. Aikins; David A. Schooley; Khurshida Begum; Michel Detheux; Richard W. Beeman; Yoonseong Park

The insect arginine vasopressin-like (AVPL) peptide is of special interest because of its potential function in the regulation of diuresis. Genome sequences of the red flour beetle Tribolium castaneum yielded the genes encoding AVPL and AVPL receptor, whereas the homologous sequences are absent in the genomes of the fruitfly, malaria mosquito, silkworm, and honeybee, although a recent genome sequence of the jewel wasp revealed an AVPL sequence. The Tribolium receptor for the AVPL, the first such receptor identified in any insect, was expressed in a reporter system, and showed a strong response (EC(50)=1.5 nM) to AVPL F1, the monomeric form having an intramolecular disulfide bond. In addition to identifying the AVPL receptor, we have demonstrated that it has in vivo diuretic activity, but that it has no direct effect on Malpighian tubules. However, when the central nervous system plus corpora cardiaca and corpora allata are incubated along with the peptide and Malpighian tubules, the latter are stimulated by the AVPL peptide, suggesting it acts indirectly. Summing up all the results from this study, we conclude that AVPL functions as a monomer in Tribolium, indirectly stimulating the Malpighian tubules through the central nervous system including the endocrine organs corpora cardiaca and corpora allata. RNA interference in the late larval stages successfully suppressed mRNA levels of avpl and avpl receptor, but with no mortality or abnormal phenotype, implying that the AVPL signaling pathway may have been near-dispensable in the early lineage of holometabolous insects.

Collaboration


Dive into the Yoonseong Park's collaboration.

Top Co-Authors

Avatar

Richard W. Beeman

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ladislav Šimo

École nationale vétérinaire d'Alfort

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghun Kim

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Juraj Koči

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjun Wang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Dusan Zitnan

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Li

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge