Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juraj Koči is active.

Publication


Featured researches published by Juraj Koči.


PLOS ONE | 2011

Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands.

Ladislav Šimo; Juraj Koči; Dušan Žitňan; Yoonseong Park

Ticks that feed on vertebrate hosts use their salivary secretion, which contains various bioactive components, to manipulate the hosts responses. The mechanisms controlling the tick salivary gland in this dynamic process are not well understood. We identified the tick D1 receptor activated by dopamine, a potent inducer of the salivary secretion of ticks. Temporal and spatial expression patterns examined by immunohistochemistry and reverse transcription polymerase chain reaction suggest that the dopamine produced in the basal cells of salivary gland acini is secreted into the lumen and activates the D1 receptors on the luminal surface of the cells lining the acini. Therefore, we propose a paracrine function of dopamine that is mediated by the D1 receptor in the salivary gland at an early phase of feeding. The molecular and pharmacological characterization of the D1 receptor in this study provides the foundation for understanding the functions of dopamine in the blood-feeding of ticks.


Journal of Medical Entomology | 2013

Validation of Internal Reference Genes for Real-Time Quantitative Polymerase Chain Reaction Studies in the Tick, Ixodes scapularis (Acari: Ixodidae)

Juraj Koči; Ladislav Šimo; Yoonseong Park

ABSTRACT Obtaining reliable gene expression data using real-time quantitative polymerase chain reaction (qPCR) is highly dependent on the choice of normalization method. We tested the expression stability of multiple candidate genes in the salivary glands (SG) and synganglia (SYN) of female Ixodes scapularis (Say) ticks in multiple blood-feeding phases. We found that the amount of total RNA in both the SG and SYN increases dramatically during tick feeding, with 34× and 5.8× increases from 62 and 7.1 ng of unfed tick, respectively. We tested candidate genes that were predicted from I. scapularis genome data to encode glyceraldehyde 3-phosphate dehydrogenase (gapdh), ribosomal protein L13A (l13a), TATA box-binding protein (tbp), ribosomal protein S4 (rps4), glucose 6-phosphate dehydrogenase (gpdh), and beta-glucuronidase (gusb). The geNorm and NormFinder algorithms were used to analyze data from different feeding phases (i.e., daily samples from unfed to fully engorged females over a 7-d period in three replicate experiments). We found that the rps4 and l13a genes showed highly stable expression patterns over the feeding duration in both the SG and SYN. Furthermore, the highly expressed rps4 gene makes it useful as a normalization factor when we perform studies using minute amounts of dissected tissue for qPCR. We conclude that rps4 and l13a, whether individually or as a pair, serve as suitable internal reference genes for qRT-PCR studies in the SG and SYN of I. scapularis.


Behavioural Brain Research | 2014

Individual differences in impulsive and risky choice: effects of environmental rearing conditions

Kimberly Kirkpatrick; Andrew T. Marshall; Aaron P. Smith; Juraj Koči; Yoonseong Park

The present experiment investigated early-rearing environment modulation of individual differences in impulsive and risky choice. Rats were reared in an isolated condition (IC; n=12), in which they lived alone without novel stimuli, or an enriched condition (EC; n=11), in which they lived among conspecifics with novel stimuli. The impulsive choice task involved choices between smaller-sooner (SS) versus larger-later (LL) rewards. The risky choice task involved choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards. Following choice testing, incentive motivation to work for food was measured using a progressive ratio task and correlated with choice behavior. HPLC analyses were conducted to determine how monoamine concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to behavior in different tasks. IC rats were more impulsive than EC rats, but they did not differ in risky choice behavior. However, choice behavior across tasks was significantly correlated (i.e., the more impulsive rats were also riskier). There were no group differences in monoamine levels, but noradrenergic and serotonergic concentrations were significantly correlated with impulsive and risky choice. Furthermore, serotonin and norepinephrine concentrations in the NAC significantly correlated with incentive motivation and the timing of the reward delays within the choice tasks. These results suggest a role for domain general processes in impulsive and risky choice and indicate the importance of the NAC and/or PFC in timing, reward processing, and choice behavior.


PLOS ONE | 2014

Ultrastructural changes caused by Snf7 RNAi in larval enterocytes of western corn rootworm (Diabrotica virgifera virgifera Le Conte).

Juraj Koči; Parthasarathy Ramaseshadri; Renata Bolognesi; Gerrit Segers; Ronald Flannagan; Yoonseong Park

The high sensitivity to oral RNA interference (RNAi) of western corn rootworm (WCR, Diabrotica virgifera virgifera Le Conte) provides a novel tool for pest control. Previous studies have shown that RNAi of DvSnf7, an essential cellular component of endosomal sorting complex required for transport (ESCRT), caused deficiencies in protein de-ubiquitination and autophagy, leading to WCR death. Here we investigated the detailed mechanism leading to larval death by analyzing the ultrastructural changes in midgut enterocytes of WCR treated with double-stranded RNA (ds-DvSnf7). The progressive phases of pathological symptoms caused by DvSnf7-RNAi in enterocytes include: 1) the appearance of irregularly shaped macroautophagic complexes consisting of relatively large lysosomes and multi-lamellar bodies, indicative of failure in autolysosome formation; 2) cell sloughing and loss of apical microvilli, and eventually, 3) massive loss of cellular contents indicating loss of membrane integrity. These data suggest that the critical functions of Snf7 in insect midgut cells demonstrated by the ultrastructural changes in DvSnf7 larval enterocytes underlies the conserved essential function of the ESCRT pathway in autophagy and membrane stability in other organisms.


The Journal of Comparative Neurology | 2014

Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis.

Ladislav Šimo; Juraj Koči; Donghun Kim; Yoonseong Park

The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate‐specific D1‐like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in vertebrates during evolution. InvD1L expressed in Chinese hamster ovary (CHO)‐K1 cells was activated by dopamine with a median effective dose (EC50) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon‐like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta‐tubulin antibody, lining the acinar lumen in a web‐like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells. J. Comp. Neurol. 522:2038–2052, 2014.


Journal of Insect Physiology | 2014

Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis.

Juraj Koči; Ladislav Šimo; Yoonseong Park

Dopamine (DA) is known to be the most potent activator of tick salivary secretion, which is an essential component of successful tick feeding. We examined the quantitative changes of catecholamines using a method coupling high-pressure liquid chromatography with electrochemical detection (HPLC-ECD). We also investigated the levels of catecholamines conjugated to other molecules utilising appropriate methods to hydrolyse the conjugates. Three different biological samples, salivary glands, synganglia, ovaries and haemolymph were compared, and the largest quantity of DA was detected in salivary gland extracts (up to ∼100pg/tick), supporting the hypothesis that autocrine/paracrine dopamine activates salivary secretion. Quantitative changes of catecholamines in the salivary glands over the entire blood feeding duration were examined. The amount of dopamine in the salivary glands increased until the day 5 of feeding, at which the rapid engorgement phase began. We also detected a small but significant amount of norepinephrine in the salivary glands. Interestingly, saliva collected after induction of salivary secretion by the cholinergic agonist pilocarpine contained a large amount of DA sulphate with a trace amount of DA, suggesting a potential biological role of DA sulphate in tick saliva.


Toxicology in Vitro | 2015

In vitro safety assessment of food ingredients in canine renal proximal tubule cells.

Juraj Koči; Brett Jeffery; Jim E. Riviere; Nancy A. Monteiro-Riviere

In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool.


Food and Chemical Toxicology | 2015

Safety assessment of potential food ingredients in canine hepatocytes.

Leshuai W. Zhang; Juraj Koči; Brett Jeffery; Jim E. Riviere; Nancy A. Monteiro-Riviere

This research aimed to develop in vitro methods to assess hazard of canine food ingredients. Canine hepatocytes were harvested and cell viability of clove-leaf oil (CLO), eugenol (EUG), lemongrass oil (LGO), guanosine monophosphate (GMP), inosine monophosphate (IMP), sorbose, ginger-root extract (GRE), cinnamon-bark oil (CBO), cinnamaldehyde (CINA), thymol oil (TO), thymol (THYM), and citric acid were assessed with positive controls: acetaminophen (APAP), aflatoxin B1 and xylitol. Molecular Toxicology PathwayFinder array (MTPF) analyzed toxicity mechanisms for LGO. LC50 for APAP was similar among human (3.45), rat (2.35), dog (4.26 mg/ml). Aflatoxin B1 had an LC50 of 4.43 (human), 5.78 (rat) and 6.05 (dog) µg/ml; xylitol did not decrease viability. LC50 of CLO (0.185 ± 0.075(SD)), EUG (0.165 ± 0.112), LGO (0.220 ± 0.012), GRE (1.54 ± 0.31) mg/ml; GMP (166.03 ± 41.83), GMP + IMP (208.67 ± 15.27) mM; CBO (0.08 ± 0.03), CINA (0.11 ± 0.01), TO (0.21 ± 0.03), THYM (0.05 ± 0.01), citric acid (1.58 ± 0.08) mg/ml, while sorbose was non-toxic. LGO induced upregulation of 16 and down-regulation of 24 genes, which CYP and heat shock most affected. These results suggest that in vitro assays such as this may be useful for hazard assessment of food ingredients for altered hepatic function.


International Journal of Veterinary Health Science & Research | 2016

Mechanistic Toxicity Assessment of Hexahydroisohumulone in Canine Hepatocytes, Renal Proximal Tubules, Bone Marrow-Derived Mesenchymal Stem Cells, and Enterocyte-like Cells

Kyoungju Choi; Juraj Koči; Maria Teresa Ortega; Brett Jeffery; Jim E. Riviere; Nancy A. Monteiro-Riviere

In vitro test methods are used primarily for rapid screening of chemicals based on mechanistic understanding of toxicity to predict hazards and potential risks. We investigated organ-specific oxidative stress and the molecular mechanism of toxicity using the pathway-focused DNA array of the hop ingredient hexahydroisohumulone (HEX) with canine hepatocytes, canine proximal tubule cells (CPTC), bone marrow-derived mesenchymal stem cells (BMSC) and enterocyte-like cells (ELC). Free radical species were produced in HEX-treated hepatocytes and to a lesser extent in CPTC, BMSC and ELC. Transcriptional profiles showed 30.5% (113 genes) out of 370 genes were differentially expressed in hepatocytes followed by CPTC (21.6%, 80 genes), ELC (4.8%, 18 genes) and BMSC (1.0%, 4 genes). HEX predominantly affected DNA damage/ repair pathways in hepatocytes and CPTC, while for ELC endoplasmic reticulum (ER) stress/unfolded protein response (UPR) dominated. Cyclooxygenase-2 (COX-2) and C/EBP homologous protein (CHOP) were most abundant genes in HEX-treated hepatocytes and CPTC; networked complementary between various pathways resulting in its adverse effect on oxidative stress, ER stress/UPR, mitochondrial metabolism and apoptosis. This work contributes to the understanding of the molecular effects of HEX, cellular response to oxidative stress and provides insight into genes altered with HEX exposure and the cell-type specific responses in dogs.


Nature Communications | 2016

Genomic insights into the Ixodes scapularis tick vector of Lyme disease

Monika Gulia-Nuss; Andrew B. Nuss; Jason M. Meyer; Daniel E. Sonenshine; R. Michael Roe; Robert M. Waterhouse; David B. Sattelle; José de la Fuente; José M. C. Ribeiro; Karine Megy; Jyothi Thimmapuram; Jason R. Miller; Brian Walenz; Sergey Koren; Jessica B. Hostetler; Mathangi Thiagarajan; Vinita Joardar; Linda I. Hannick; Shelby Bidwell; Martin Hammond; Qiandong Zeng; Jenica Abrudan; Francisca C. Almeida; Nieves Ayllón; Ketaki Bhide; Brooke W. Bissinger; Elena Bonzón-Kulichenko; Steven D. Buckingham; Daniel R. Caffrey; Melissa J. Caimano

Collaboration


Dive into the Juraj Koči's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Walenz

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Brooke W. Bissinger

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge