Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshifumi Nishimura is active.

Publication


Featured researches published by Yoshifumi Nishimura.


Nature Communications | 2013

Growth of carbon nanotubes via twisted graphene nanoribbons.

Hong En Lim; Yasumitsu Miyata; Ryo Kitaura; Yoshifumi Nishimura; Yoshio Nishimoto; Stephan Irle; Jamie H. Warner; Hiromichi Kataura; Hisanori Shinohara

Carbon nanotubes have long been described as rolled-up graphene sheets. It is only fairly recently observed that longitudinal cleavage of carbon nanotubes, using chemical, catalytical and electrical approaches, unzips them into thin graphene strips of various widths, the so-called graphene nanoribbons. In contrast, rolling up these flimsy ribbons into tubes in a real experiment has not been possible. Theoretical studies conducted by Kit et al. recently demonstrated the tube formation through twisting of graphene nanoribbon, an idea very different from the rolling-up postulation. Here we report the first experimental evidence of a thermally induced self-intertwining of graphene nanoribbons for the preferential synthesis of (7, 2) and (8, 1) tubes within parent-tube templates. Through the tailoring of ribbon’s width and edge, the present finding adds a radically new aspect to the understanding of carbon nanotube formation, shedding much light on not only the future chirality tuning, but also contemporary nanomaterials engineering.


Nature Communications | 2015

Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity

Hui Yu Lin; Yu Hsuan Huang; Xiaohong Wang; Joel M. Bowman; Yoshifumi Nishimura; Henryk A. Witek; Yuan Pern Lee

The Criegee intermediates are carbonyl oxides that play critical roles in ozonolysis of alkenes in the atmosphere. So far, the mid-infrared spectrum of only the simplest Criegee intermediate CH2OO has been reported. Methyl substitution of CH2OO produces two conformers of CH3CHOO and consequently complicates the infrared spectrum. Here we report the transient infrared spectrum of syn- and anti-CH3CHOO, produced from CH3CHI + O2 in a flow reactor, using a step-scan Fourier-transform spectrometer. Guided and supported by high-level full-dimensional quantum calculations, rotational contours of the four observed bands are simulated successfully and provide definitive identification of both conformers. Furthermore, anti-CH3CHOO shows a reactivity greater than syn-CH3CHOO towards NO/NO2; at the later period of reaction, the spectrum can be simulated with only syn-CH3CHOO. Without NO/NO2, anti-CH3CHOO also decays much faster than syn-CH3CHOO. The direct infrared detection of syn- and anti-CH3CHOO should prove useful for field measurements and laboratory investigations of the Criegee mechanism.


Journal of the American Chemical Society | 2011

Dramatic Reduction of IR Vibrational Cross Sections of Molecules Encapsulated in Carbon Nanotubes

Dmitry Kazachkin; Yoshifumi Nishimura; Henryk A. Witek; Stephan Irle; Eric Borguet

Combined temperature-programmed desorption and IR studies suggest that absorption cross sections of IR-active vibrations of molecules strongly bound to single-wall carbon nanotubes (SWCNTs) are reduced at least by a factor of 10. Quantum chemical simulations show that IR intensities of endohedrally encapsulated molecules are dramatically reduced, and identify dielectric screening by highly polarizable SWCNT sidewalls as the origin of such screening. The observed intensity reduction originates from a sizable cancellation of adsorbate dipole moments by mirror charges dynamically induced on the nanotube sidewalls. For exohedrally adsorbed molecules, the dielectric screening is found to be orientation-dependent with a smaller magnitude for adsorption in groove and interstitial sites. The presented results clearly demonstrate and quantify the screening effect of SWCNTs and unequivocally show that IR spectroscopy cannot be applied in a straightforward manner to the study of peapod systems.


Langmuir | 2008

Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.

Dmitry Kazachkin; Yoshifumi Nishimura; Stephan Irle; Keiji Morokuma; Radisav D. Vidic; Eric Borguet

The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.


Journal of Chemical Physics | 2014

Critical interpretation of CH- and OH- stretching regions for infrared spectra of methanol clusters (CH3OH) n (n = 2-5) using self-consistent-charge density functional tight-binding molecular dynamics simulations

Yoshifumi Nishimura; Yuan Pern Lee; Stephan Irle; Henryk A. Witek

Vibrational infrared (IR) spectra of gas-phase O-H⋅⋅⋅O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the C-H stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the C-H stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ν3, ν9, and ν2 C-H stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.


Journal of Chemical Theory and Computation | 2016

Automatized Parameterization of DFTB Using Particle Swarm Optimization.

Chien Pin Chou; Yoshifumi Nishimura; Chin Chai Fan; Grzegorz Mazur; Stephan Irle; Henryk A. Witek

We present a novel density-functional tight-binding (DFTB) parametrization toolkit developed to optimize the parameters of various DFTB models in a fully automatized fashion. The main features of the algorithm, based on the particle swarm optimization technique, are discussed, and a number of initial pilot applications of the developed methodology to molecular and solid systems are presented.


ChemPhysChem | 2014

Mechanism of back electron transfer in an intermolecular photoinduced electron transfer reaction: solvent as a charge mediator.

Sudhakar Narra; Yoshifumi Nishimura; Henryk A. Witek; Shinsuke Shigeto

Back electron transfer (BET) is one of the important processes that govern the decay of generated ion pairs in intermolecular photoinduced electron transfer reactions. Unfortunately, a detailed mechanism of BET reactions remains largely unknown in spite of their importance for the development of molecular photovoltaic structures. Here, we examine the BET reaction of pyrene (Py) and 1,4-dicyanobenzene (DCB) in acetonitrile (ACN) by using time-resolved near- and mid-IR spectroscopy. The Py dimer radical cation (Py2(·+)) and DCB radical anion (DCB(·-)) generated after photoexcitation of Py show asynchronous decay kinetics. To account for this observation, we propose a reaction mechanism that involves electron transfer from DCB(·-) to the solvent and charge recombination between the resulting ACN dimer anion and Py2(·+). The unique role of ACN as a charge mediator revealed herein could have implications for strategies that retard charge recombination in dye-sensitized solar cells.


Journal of Chemical Physics | 2016

Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO

Yu Hsuan Huang; Yoshifumi Nishimura; Henryk A. Witek; Yuan Pern Lee

We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm(-1) are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm(-1) is blue shifted from the corresponding band of CH2OO at 1286 cm(-1); this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm(-1), observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.


Journal of Chemical Theory and Computation | 2013

Stochastic search of molecular cluster interaction energy surfaces with coupled cluster quality prediction. The phenylacetylene dimer

Matthew Addicoat; Yoshifumi Nishimura; Takeshi Sato; Takao Tsuneda; Stephan Irle

We report a stochastic search methodology on the basis of dispersion-augmented density functional theory (DFT), aimed at finding low energy isomers of the phenylacetylene dimer as well as methane and benzene dimers. Stochastic search of the molecular cluster interaction energy surfaces was carried out with the computationally inexpensive dispersion-augmented, third-order self-consistent charge density functional tight-binding (DFTB3-D) method, and energetically low-lying molecular cluster geometries were identified, including several that had previously been optimized at the MP2/cc-pVTZ level of theory and had single point interaction energies evaluated at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) level of theory in the complete basis set limit (Maity, S. et al. Phys. Chem. Chem. Phys 2011, 13, 16706). In addition, the search procedure identifies several additional low-energy isomers that map a reaction path, rotating one monomer through a full 360° relative to the first. We found that binding energies from long-range corrected functional combined with the local response dispersion correction (LC-BOP+LRD) yields binding energies that are within 1 kJ mol(-1) of the CCSD(T)/CBS results for both π-stacked and CH···π structures. In contrast, other functionals and second-order Møller-Plesset perturbation methods favored one binding motif or the other and therefore are not ideal to describe a global potential energy surface.


Journal of Physical Chemistry C | 2012

Dimerization-initiated preferential formation of coronene-based graphene nanoribbons in carbon nanotubes

Miho Fujihara; Yasumitsu Miyata; Ryo Kitaura; Yoshifumi Nishimura; Cristopher Camacho; Stephan Irle; Yoko Iizumi; Toshiya Okazaki; Hisanori Shinohara

Collaboration


Dive into the Yoshifumi Nishimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henryk A. Witek

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Pern Lee

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

A. A. Kuzubov

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

A. S. Fedorov

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

D. A. Fedorov

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

Pavel V. Avramov

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge