Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihiro Yamanishi is active.

Publication


Featured researches published by Yoshihiro Yamanishi.


Nucleic Acids Research | 2007

KEGG for linking genomes to life and the environment.

Minoru Kanehisa; Michihiro Araki; Susumu Goto; Masahiro Hattori; Mika Hirakawa; Masumi Itoh; Toshiaki Katayama; Shuichi Kawashima; Shujiro Okuda; Toshiaki Tokimatsu; Yoshihiro Yamanishi

KEGG (http://www.genome.jp/kegg/) is a database of biological systems that integrates genomic, chemical and systemic functional information. KEGG provides a reference knowledge base for linking genomes to life through the process of PATHWAY mapping, which is to map, for example, a genomic or transcriptomic content of genes to KEGG reference pathways to infer systemic behaviors of the cell or the organism. In addition, KEGG provides a reference knowledge base for linking genomes to the environment, such as for the analysis of drug-target relationships, through the process of BRITE mapping. KEGG BRITE is an ontology database representing functional hierarchies of various biological objects, including molecules, cells, organisms, diseases and drugs, as well as relationships among them. KEGG PATHWAY is now supplemented with a new global map of metabolic pathways, which is essentially a combined map of about 120 existing pathway maps. In addition, smaller pathway modules are defined and stored in KEGG MODULE that also contains other functional units and complexes. The KEGG resource is being expanded to suit the needs for practical applications. KEGG DRUG contains all approved drugs in the US and Japan, and KEGG DISEASE is a new database linking disease genes, pathways, drugs and diagnostic markers.


intelligent systems in molecular biology | 2008

Prediction of drug–target interaction networks from the integration of chemical and genomic spaces

Yoshihiro Yamanishi; Michihiro Araki; Alex Gutteridge; Wataru Honda; Minoru Kanehisa

Motivation: The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we characterize four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug–target interaction network topology. We then develop new statistical methods to predict unknown drug–target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug–target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call ‘pharmacological space’. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug–target interaction networks. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery. Availability: Softwares are available upon request. Contact: [email protected] Supplementary information: Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.


Bioinformatics | 2009

Supervised prediction of drug–target interactions using bipartite local models

Kevin Bleakley; Yoshihiro Yamanishi

Motivation: In silico prediction of drug–target interactions from heterogeneous biological data is critical in the search for drugs for known diseases. This problem is currently being attacked from many different points of view, a strong indication of its current importance. Precisely, being able to predict new drug–target interactions with both high precision and accuracy is the holy grail, a fundamental requirement for in silico methods to be useful in a biological setting. This, however, remains extremely challenging due to, amongst other things, the rarity of known drug–target interactions. Results: We propose a novel supervised inference method to predict unknown drug–target interactions, represented as a bipartite graph. We use this method, known as bipartite local models to first predict target proteins of a given drug, then to predict drugs targeting a given protein. This gives two independent predictions for each putative drug–target interaction, which we show can be combined to give a definitive prediction for each interaction. We demonstrate the excellent performance of the proposed method in the prediction of four classes of drug–target interaction networks involving enzymes, ion channels, G protein-coupled receptors (GPCRs) and nuclear receptors in human. This enables us to suggest a number of new potential drug–target interactions. Availability: An implementation of the proposed algorithm is available upon request from the authors. Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/bipartitelocal/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2010

Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework

Yoshihiro Yamanishi; Masaaki Kotera; Minoru Kanehisa; Susumu Goto

Motivation: In silico prediction of drug–target interactions from heterogeneous biological data is critical in the search for drugs and therapeutic targets for known diseases such as cancers. There is therefore a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we investigate the relationship between the chemical space, the pharmacological space and the topology of drug–target interaction networks, and show that drug–target interactions are more correlated with pharmacological effect similarity than with chemical structure similarity. We then develop a new method to predict unknown drug–target interactions from chemical, genomic and pharmacological data on a large scale. The proposed method consists of two steps: (i) prediction of pharmacological effects from chemical structures of given compounds and (ii) inference of unknown drug–target interactions based on the pharmacological effect similarity in the framework of supervised bipartite graph inference. The originality of the proposed method lies in the prediction of potential pharmacological similarity for any drug candidate compounds and in the integration of chemical, genomic and pharmacological data in a unified framework. In the results, we make predictions for four classes of important drug–target interactions involving enzymes, ion channels, GPCRs and nuclear receptors. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery. Supplementary information: Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/pharmaco/. Availability: Softwares are available upon request. Contact: [email protected]


intelligent systems in molecular biology | 2004

Protein network inference from multiple genomic data: a supervised approach

Yoshihiro Yamanishi; Jean-Philippe Vert; Minoru Kanehisa

MOTIVATION An increasing number of observations support the hypothesis that most biological functions involve the interactions between many proteins, and that the complexity of living systems arises as a result of such interactions. In this context, the problem of inferring a global protein network for a given organism, using all available genomic data about the organism, is quickly becoming one of the main challenges in current computational biology. RESULTS This paper presents a new method to infer protein networks from multiple types of genomic data. Based on a variant of kernel canonical correlation analysis, its originality is in the formalization of the protein network inference problem as a supervised learning problem, and in the integration of heterogeneous genomic data within this framework. We present promising results on the prediction of the protein network for the yeast Saccharomyces cerevisiae from four types of widely available data: gene expressions, protein interactions measured by yeast two-hybrid systems, protein localizations in the cell and protein phylogenetic profiles. The method is shown to outperform other unsupervised protein network inference methods. We finally conduct a comprehensive prediction of the protein network for all proteins of the yeast, which enables us to propose protein candidates for missing enzymes in a biosynthesis pathway. AVAILABILITY Softwares are available upon request.


BMC Bioinformatics | 2011

Predicting drug side-effect profiles: a chemical fragment-based approach

Edouard Pauwels; Véronique Stoven; Yoshihiro Yamanishi

BackgroundDrug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients.ResultsIn the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information.ConclusionsThe proposed method is expected to be useful in various stages of the drug development process.


intelligent systems in molecular biology | 2005

Supervised enzyme network inference from the integration of genomic data and chemical information

Yoshihiro Yamanishi; Jean-Philippe Vert; Minoru Kanehisa

MOTIVATION The metabolic network is an important biological network which relates enzyme proteins and chemical compounds. A large number of metabolic pathways remain unknown nowadays, and many enzymes are missing even in known metabolic pathways. There is, therefore, an incentive to develop methods to reconstruct the unknown parts of the metabolic network and to identify genes coding for missing enzymes. RESULTS This paper presents new methods to infer enzyme networks from the integration of multiple genomic data and chemical information, in the framework of supervised graph inference. The originality of the methods is the introduction of chemical compatibility as a constraint for refining the network predicted by the network inference engine. The chemical compatibility between two enzymes is obtained automatically from the information encoded by their Enzyme Commission (EC) numbers. The proposed methods are tested and compared on their ability to infer the enzyme network of the yeast Saccharomyces cerevisiae from four datasets for enzymes with assigned EC numbers: gene expression data, protein localization data, phylogenetic profiles and chemical compatibility information. It is shown that the prediction accuracy of the network reconstruction consistently improves owing to the introduction of chemical constraints, the use of a supervised approach and the weighted integration of multiple datasets. Finally, we conduct a comprehensive prediction of a global enzyme network consisting of all enzyme candidate proteins of the yeast to obtain new biological findings. AVAILABILITY Softwares are available upon request.


Bioinformatics | 2012

Relating drug–protein interaction network with drug side effects

Sayaka Mizutani; Edouard Pauwels; Véronique Stoven; Susumu Goto; Yoshihiro Yamanishi

Motivation: Identifying the emergence and underlying mechanisms of drug side effects is a challenging task in the drug development process. This underscores the importance of system–wide approaches for linking different scales of drug actions; namely drug-protein interactions (molecular scale) and side effects (phenotypic scale) toward side effect prediction for uncharacterized drugs. Results: We performed a large-scale analysis to extract correlated sets of targeted proteins and side effects, based on the co-occurrence of drugs in protein-binding profiles and side effect profiles, using sparse canonical correlation analysis. The analysis of 658 drugs with the two profiles for 1368 proteins and 1339 side effects led to the extraction of 80 correlated sets. Enrichment analyses using KEGG and Gene Ontology showed that most of the correlated sets were significantly enriched with proteins that are involved in the same biological pathways, even if their molecular functions are different. This allowed for a biologically relevant interpretation regarding the relationship between drug–targeted proteins and side effects. The extracted side effects can be regarded as possible phenotypic outcomes by drugs targeting the proteins that appear in the same correlated set. The proposed method is expected to be useful for predicting potential side effects of new drug candidate compounds based on their protein-binding profiles. Supplementary information: Datasets and all results are available at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/. Availability: Software is available at the above supplementary website. Contact: [email protected], or [email protected]


Nucleic Acids Research | 2012

KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters

Akihiro Nakaya; Toshiaki Katayama; Masumi Itoh; Kazushi Hiranuka; Shuichi Kawashima; Yuki Moriya; Shujiro Okuda; Michihiro Tanaka; Toshiaki Tokimatsu; Yoshihiro Yamanishi; Akiyasu C. Yoshizawa; Minoru Kanehisa; Susumu Goto

The identification of orthologous genes in an increasing number of fully sequenced genomes is a challenging issue in recent genome science. Here we present KEGG OC (http://www.genome.jp/tools/oc/), a novel database of ortholog clusters (OCs). The current version of KEGG OC contains 1 176 030 OCs, obtained by clustering 8 357 175 genes in 2112 complete genomes (153 eukaryotes, 1830 bacteria and 129 archaea). The OCs were constructed by applying the quasi-clique-based clustering method to all possible protein coding genes in all complete genomes, based on their amino acid sequence similarities. It is computationally efficient to calculate OCs, which enables to regularly update the contents. KEGG OC has the following two features: (i) It consists of all complete genomes of a wide variety of organisms from three domains of life, and the number of organisms is the largest among the existing databases; and (ii) It is compatible with the KEGG database by sharing the same sets of genes and identifiers, which leads to seamless integration of OCs with useful components in KEGG such as biological pathways, pathway modules, functional hierarchy, diseases and drugs. The KEGG OC resources are accessible via OC Viewer that provides an interactive visualization of OCs at different taxonomic levels.


Bioinformatics | 2012

Drug target prediction using adverse event report systems

Masaaki Kotera; Yosuke Nishimura; Susumu Goto; Yoshihiro Yamanishi

Motivation: Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. Results: We defined pharmacological similarity for all possible drugs using the US Food and Drug Administrations (FDAs) adverse event reporting system (AERS) and developed a new method to predict unknown drug–target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug–target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug–target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Availability: Softwares are available upon request. Contact: [email protected] Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/.

Collaboration


Dive into the Yoshihiro Yamanishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sayaka Mizutani

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge