Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshikatsu Matsubayashi is active.

Publication


Featured researches published by Yoshikatsu Matsubayashi.


Science | 2008

Arabidopsis CLV3 peptide directly binds CLV1 ectodomain

Mari Ogawa; Hidefumi Shinohara; Youji Sakagami; Yoshikatsu Matsubayashi

CLV1, which encodes a leucine-rich repeat receptor kinase, and CLV3, which encodes a secreted peptide, function in the same genetic pathway to maintain stem cell populations in Arabidopsis shoot apical meristem. Here, we show biochemical evidence, by ligand binding assay and photoaffinity labeling, that the CLV3 peptide directly binds the CLV1 ectodomain with a dissociation constant of 17.5 nM. The CLV1 ectodomain also interacts with the structurally related CLE peptides, with distinct affinities depending on the specific amino acid sequence. Our results provide direct evidence that CLV3 and CLV1 function as a ligand-receptor pair involved in stem cell maintenance.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system

Yuki Hirakawa; Hidefumi Shinohara; Yuki Kondo; Asuka Inoue; Ikuko Nakanomyo; Mari Ogawa; Shinichiro Sawa; Kyoko Ohashi-Ito; Yoshikatsu Matsubayashi; Hiroo Fukuda

Land plants evolved a long-distance transport system of water and nutrients composed of the xylem and phloem, both of which are generated from the procambium- and cambium-comprising vascular stem cells. However, little is known about the molecular mechanism of cell communication governing xylem–phloem patterning. Here, we show that a dodecapeptide (HEVHypSGHypNPISN; Hyp, 4-hydroxyproline), TDIF (tracheary element differentiation inhibitory factor), is secreted from the phloem and suppresses the differentiation of vascular stem cells into xylem cells through a leucine-rich repeat receptor-like kinase (LRR-RLK). TDIF binds in vitro specifically to the LRR-RLK, designated TDR (putative TDIF receptor), whose expression is restricted to procambial cells. However, the combined analysis of TDIF with a specific antibody and the expression profiles of the promoters of two genes encoding TDIF revealed that TDIF is synthesized mainly in, and secreted from, the phloem and its neighboring cells. The observation that TDIF is capable of promoting proliferation of procambial cells while suppressing xylem differentiation suggests that this small peptide functions as a phloem-derived, non-cell-autonomous signal that controls stem cell fate in the procambium. Our results indicate that we have discovered a cell communication system governing phloem–xylem cross-talk.


Nature Chemical Biology | 2009

A glycopeptide regulating stem cell fate in Arabidopsis thaliana

Kentaro Ohyama; Hidefumi Shinohara; Mari Ogawa-Ohnishi; Yoshikatsu Matsubayashi

The secreted peptide gene CLAVATA3 (CLV3) regulates stem cell fate in the shoot apical meristem in Arabidopsis thaliana plants, but the molecular structure of the active mature CLV3 peptide is controversial. Here, using nano-LC-MS/MS analysis of apoplastic peptides of A. thaliana plants overexpressing CLV3, we show that CLV3 is a 13-amino-acid arabinosylated glycopeptide. Post-translational arabinosylation of CLV3 is critical for its biological activity and high-affinity binding to its receptor CLV1.


Science | 2010

Secreted Peptide Signals Required for Maintenance of Root Stem Cell Niche in Arabidopsis

Yo Matsuzaki; Mari Ogawa-Ohnishi; Ayaka Mori; Yoshikatsu Matsubayashi

Making Roots A tiny bunch of stem cells generates the bulk and diversity of plant roots. These cells are found at the root meristem and are themselves regulated by signaling inputs from a variety of sources. In Arabidopsis, Matsuzaki et al. (p. 1065) have identified a family of peptide factors that regulate these root stem cells. These peptides, known as root meristem growth factors, carry the post-translational modification, tyrosine sulfation, and are essential for maintaining the root stem cell niche. Short-range signaling by sulfated peptides maintains root stem cells. Stem cells are maintained in the niche by intercellular interactions and signaling networks. In this work, we study extracellular signals required for maintenance of the root stem cell niche in higher plants. We identify a family of functionally redundant homologous peptides that are secreted, tyrosine-sulfated, and expressed mainly in the stem cell area and the innermost layer of central columella cells. We name these peptides root meristem growth factors (RGFs). RGFs are required for maintenance of the root stem cell niche and transit amplifying cell proliferation in Arabidopsis. RGF1 defines expression levels and patterns of the stem cell transcription factor PLETHORA, mainly at the posttranscriptional level. The RGFs function independently of the auxin pathway. These peptide signals play a crucial role in postembryonic root development.


Science | 2014

Perception of root-derived peptides by shoot lrr-rks mediates systemic n-demand signaling

Ryo Tabata; Kumiko Sumida; Tomoaki Yoshii; Kentaro Ohyama; Hidefumi Shinohara; Yoshikatsu Matsubayashi

Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability. Nitrogen-starved rootlets send small peptides to the shoot to initiate compensatory uptake in other rootlets. [Also see Perspective by Bisseling and Scheres] Getting to the root of a root problem Although a plants root system reaches through the soil in search of nutrients, its search is not indiscriminate. If some section of the root is unable to deliver the amount of nitrogen that the rest of the plant demands, other sections of the root compensate and ramp up their delivery of nitrogen. Tabata et al. have now found a small peptide that delivers a signal involved in this process (see the Perspective by Bisseling and Scheres). Only with perception of the signal by the matching receptor in the shoot can the root system compensate for unproductive members. Science, this issue p. 343; see also p. 300


Plant Journal | 2008

Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC‐MS‐based structure analysis

Kentaro Ohyama; Mari Ogawa; Yoshikatsu Matsubayashi

Peptidomics is a challenging field in which to create a link between genomic information and biological function through biochemical analysis of expressed peptides, including precise identification of post-translational modifications and proteolytic processing. We found that secreted peptides in Arabidopsis plants diffuse into the medium of whole-plant submerged cultures, and can be effectively identified by o-chlorophenol extraction followed by LC-MS analysis. Using this system, we first confirmed that a 12-amino-acid mature CLE44 peptide accumulated at a considerable level in the culture medium of transgenic plants overexpressing CLE44. Next, using an in silico approach, we identified a novel gene family encoding small secreted peptides that exhibit significant sequence similarity within the C-terminal short conserved domain. We determined that the mature peptide encoded by At1g47485, a member of this gene family, is a 15-amino-acid peptide containing two hydroxyproline residues derived from the conserved domain. This peptide, which we have named CEP1, is mainly expressed in the lateral root primordia and, when overexpressed or externally applied, significantly arrests root growth. CEP1 is a candidate for a novel peptide plant hormone.


Nature Communications | 2013

Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase

Satoru Okamoto; Hidefumi Shinohara; Tomoko Mori; Yoshikatsu Matsubayashi; Masayoshi Kawaguchi

Leguminous plants establish a symbiosis with rhizobia to enable nitrogen fixation in root nodules under the control of the presumed root-to-shoot-to-root negative feedback called autoregulation of nodulation. In Lotus japonicus, autoregulation is mediated by CLE-RS genes that are specifically expressed in the root, and the receptor kinase HAR1 that functions in the shoot. However, the mature functional structures of CLE-RS gene products and the molecular nature of CLE-RS/HAR1 signalling governed by these spatially distant components remain elusive. Here we show that CLE-RS2 is a post-translationally arabinosylated glycopeptide derived from the CLE domain. Chemically synthesized CLE-RS glycopeptides cause significant suppression of nodulation and directly bind to HAR1 in an arabinose-chain and sequence-dependent manner. In addition, CLE-RS2 glycopeptide specifically produced in the root is found in xylem sap collected from the shoot. We propose that CLE-RS glycopeptides are the long sought mobile signals responsible for the initial step of autoregulation of nodulation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis

Yukari Amano; Hiroko Tsubouchi; Hidefumi Shinohara; Mari Ogawa; Yoshikatsu Matsubayashi

Posttranslational modification can confer special functions to peptides. Based on exhaustive liquid chromatography mass spectrometry analysis targeting tyrosine-sulfated peptides, we identified an 18-aa tyrosine-sulfated glycopeptide in Arabidopsis cell suspension culture medium. This peptide, which we named PSY1, significantly promotes cellular proliferation and expansion at nanomolar concentrations. PSY1 is widely expressed in various Arabidopsis tissues, including shoot apical meristem, and is highly up-regulated by wounding. Perception of PSY1 depends on At1g72300, which is a leucine-rich repeat receptor kinase (LRR-RK) whose two paralogs are involved in the perception of phytosulfokine (PSK), which is a 5-aa tyrosine-sulfated peptide that primarily promotes cellular proliferation. Multiple loss-of-function mutations in these three paralogous LRR-RKs significantly enhanced phenotypes, compared with single disruptants, suggesting that these LRR-RKs have overlapping functions. Triple mutations in these LRR-RKs resulted in dwarfism because of decreases in cell number and cell size and caused insufficiency in tissue repair after wounding. The present results suggest that this paralogous LRR-RK family integrates growth-promoting signals mediated by two structurally distinct sulfated peptides: PSY1 and PSK.


Plant Molecular Biology | 1998

Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures

Shunsuke Imanishi; Katsuhito Hashizume; Makiko Nakakita; Hisae Kojima; Yoshikatsu Matsubayashi; Takashi Hashimoto; Youji Sakagami; Yasuyuki Yamada; Kenzo Nakamura

A cDNA of tobacco BY-2 cells corresponding to an mRNA species which was rapidly induced by methyl jasmonate (MeJA) in the presence of cycloheximide (CHX) was found to encode ornithine decarboxylase (ODC). Another cDNA from a MeJA-inducible mRNA encoded S-adenosylmethionine synthase (SAMS). Although these enzymes could be involved in the biosynthesis of polyamines, the level of putrescine, a reaction product of ODC, increased slowly and while the levels of spermidine and spermine did not change following treatment of cells with MeJA. However, N-methylputrescine, which is a precursor of pyrrolidine ring of nicotine, started to increase shortly after MeJA-treatment of cells and the production of nicotine occured thereafter. The levels of mRNA for arginine decarboxylase (ADC), an alternative enzyme for putrescine synthesis, and that for S-adenosylmethionine decarboxylase (SAMDC), required for polyamine synthesis, were not affected by MeJA. In addition to mRNAs for ODC and SAMS, mRNA for putrescine N-methyltransferase (PMT) was also induced by MeJA. Unlike the MeJA-induction of ODC mRNA, MeJA-induction of SAMS and PMT mRNAs were blocked by CHX. The level of ODC mRNA declined after 1 to 4 h following MeJA treatment, while the levels of mRNAs for SAMS and PMT continued to increase. Auxin significantly reduced the MeJA-inducible accumulation of mRNAs for ODC, SAMS and PMT. These results indicate that MeJA sequentially induces expression of a series of genes involved in nicotine biosynthesis by multiple regulatory mechanisms.p>


Annual Review of Plant Biology | 2014

Posttranslationally Modified Small-Peptide Signals in Plants

Yoshikatsu Matsubayashi

Cell-to-cell signaling is essential for many processes in plant growth and development, including coordination of cellular responses to developmental and environmental cues. Cumulative studies have demonstrated that peptide signaling plays a greater-than-anticipated role in such intercellular communication. Some peptides act as signals during plant growth and development, whereas others are involved in defense responses or symbiosis. Peptides secreted as signals often undergo posttranslational modification and proteolytic processing to generate smaller peptides composed of approximately 10 amino acid residues. Such posttranslationally modified small-peptide signals constitute one of the largest groups of secreted peptide signals in plants. The location of the modification group incorporated into the peptides by specific modification enzymes and the peptide chain length defined by the processing enzymes are critical for biological function and receptor interaction. This review covers 20 years of research into posttranslationally modified small-peptide signals in plants.

Collaboration


Dive into the Yoshikatsu Matsubayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge