Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Ogawa is active.

Publication


Featured researches published by Mari Ogawa.


Science | 2008

Arabidopsis CLV3 peptide directly binds CLV1 ectodomain

Mari Ogawa; Hidefumi Shinohara; Youji Sakagami; Yoshikatsu Matsubayashi

CLV1, which encodes a leucine-rich repeat receptor kinase, and CLV3, which encodes a secreted peptide, function in the same genetic pathway to maintain stem cell populations in Arabidopsis shoot apical meristem. Here, we show biochemical evidence, by ligand binding assay and photoaffinity labeling, that the CLV3 peptide directly binds the CLV1 ectodomain with a dissociation constant of 17.5 nM. The CLV1 ectodomain also interacts with the structurally related CLE peptides, with distinct affinities depending on the specific amino acid sequence. Our results provide direct evidence that CLV3 and CLV1 function as a ligand-receptor pair involved in stem cell maintenance.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system

Yuki Hirakawa; Hidefumi Shinohara; Yuki Kondo; Asuka Inoue; Ikuko Nakanomyo; Mari Ogawa; Shinichiro Sawa; Kyoko Ohashi-Ito; Yoshikatsu Matsubayashi; Hiroo Fukuda

Land plants evolved a long-distance transport system of water and nutrients composed of the xylem and phloem, both of which are generated from the procambium- and cambium-comprising vascular stem cells. However, little is known about the molecular mechanism of cell communication governing xylem–phloem patterning. Here, we show that a dodecapeptide (HEVHypSGHypNPISN; Hyp, 4-hydroxyproline), TDIF (tracheary element differentiation inhibitory factor), is secreted from the phloem and suppresses the differentiation of vascular stem cells into xylem cells through a leucine-rich repeat receptor-like kinase (LRR-RLK). TDIF binds in vitro specifically to the LRR-RLK, designated TDR (putative TDIF receptor), whose expression is restricted to procambial cells. However, the combined analysis of TDIF with a specific antibody and the expression profiles of the promoters of two genes encoding TDIF revealed that TDIF is synthesized mainly in, and secreted from, the phloem and its neighboring cells. The observation that TDIF is capable of promoting proliferation of procambial cells while suppressing xylem differentiation suggests that this small peptide functions as a phloem-derived, non-cell-autonomous signal that controls stem cell fate in the procambium. Our results indicate that we have discovered a cell communication system governing phloem–xylem cross-talk.


Plant Journal | 2008

Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC‐MS‐based structure analysis

Kentaro Ohyama; Mari Ogawa; Yoshikatsu Matsubayashi

Peptidomics is a challenging field in which to create a link between genomic information and biological function through biochemical analysis of expressed peptides, including precise identification of post-translational modifications and proteolytic processing. We found that secreted peptides in Arabidopsis plants diffuse into the medium of whole-plant submerged cultures, and can be effectively identified by o-chlorophenol extraction followed by LC-MS analysis. Using this system, we first confirmed that a 12-amino-acid mature CLE44 peptide accumulated at a considerable level in the culture medium of transgenic plants overexpressing CLE44. Next, using an in silico approach, we identified a novel gene family encoding small secreted peptides that exhibit significant sequence similarity within the C-terminal short conserved domain. We determined that the mature peptide encoded by At1g47485, a member of this gene family, is a 15-amino-acid peptide containing two hydroxyproline residues derived from the conserved domain. This peptide, which we have named CEP1, is mainly expressed in the lateral root primordia and, when overexpressed or externally applied, significantly arrests root growth. CEP1 is a candidate for a novel peptide plant hormone.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis

Yukari Amano; Hiroko Tsubouchi; Hidefumi Shinohara; Mari Ogawa; Yoshikatsu Matsubayashi

Posttranslational modification can confer special functions to peptides. Based on exhaustive liquid chromatography mass spectrometry analysis targeting tyrosine-sulfated peptides, we identified an 18-aa tyrosine-sulfated glycopeptide in Arabidopsis cell suspension culture medium. This peptide, which we named PSY1, significantly promotes cellular proliferation and expansion at nanomolar concentrations. PSY1 is widely expressed in various Arabidopsis tissues, including shoot apical meristem, and is highly up-regulated by wounding. Perception of PSY1 depends on At1g72300, which is a leucine-rich repeat receptor kinase (LRR-RK) whose two paralogs are involved in the perception of phytosulfokine (PSK), which is a 5-aa tyrosine-sulfated peptide that primarily promotes cellular proliferation. Multiple loss-of-function mutations in these three paralogous LRR-RKs significantly enhanced phenotypes, compared with single disruptants, suggesting that these LRR-RKs have overlapping functions. Triple mutations in these LRR-RKs resulted in dwarfism because of decreases in cell number and cell size and caused insufficiency in tissue repair after wounding. The present results suggest that this paralogous LRR-RK family integrates growth-promoting signals mediated by two structurally distinct sulfated peptides: PSY1 and PSK.


Plant Physiology | 2006

Disruption and Overexpression of Arabidopsis Phytosulfokine Receptor Gene Affects Cellular Longevity and Potential for Growth

Yoshikatsu Matsubayashi; Mari Ogawa; Hitomi Kihara; Masaaki Niwa; Youji Sakagami

Phytosulfokine (PSK), a 5-amino acid sulfated peptide that has been identified in conditioned medium of plant cell cultures, promotes cellular growth in vitro via binding to the membrane-localized PSK receptor. Here, we report that loss-of-function and gain-of-function mutations of the Arabidopsis (Arabidopsis thaliana) PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Although mutant pskr1-1 plants exhibit morphologically normal growth until 3 weeks after germination, individual pskr1-1 cells gradually lose their potential to form calluses as tissues mature. Shortly after a pskr1-1 callus forms, it loses potential for growth, resulting in formation of a smaller callus than the wild type. Leaves of pskr1-1 plants exhibit premature senescence after bolting. Leaves of AtPSKR1ox plants exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Calluses derived from AtPSKR1ox plants maintain their potential for growth longer than wild-type calluses. Combined with our finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, the available evidence indicates that PSK signaling affects cellular longevity and potential for growth and thereby exerts a pleiotropic effect on cultured tissue in response to environmental hormonal conditions.


Journal of Biological Chemistry | 2007

Identification of Ligand Binding Site of Phytosulfokine Receptor by On-column Photoaffinity Labeling

Hidefumi Shinohara; Mari Ogawa; Youji Sakagami; Yoshikatsu Matsubayashi

Phytosulfokine (PSK), an endogenous 5-amino-acid-secreted peptide in plants, affects cellular potential for growth via binding to PSKR1, a member of the leucine-rich repeat receptor kinase (LRR-RK) family. PSK interacts with PSKR1 in a highly specific manner with a nanomolar dissociation constant. However, it is not known which residues in the PSKR1 extracellular domain constitute the ligand binding pocket. Here, we have identified the PSK binding domain of carrot PSKR1 (DcPSKR1) by photoaffinity labeling. We cross-linked the photoactivatable PSK analog [125I]-[Nϵ-(4-azidosalicyl)Lys5]PSK with DcPSKR1 using UV irradiation and mapped the cross-linked region using chemical and enzymatic fragmentation. We also established a novel “on-column photoaffinity labeling” methodology that allows repeated incorporation of the photoaffinity label to increase the efficiency of the photoaffinity cross-linking reactions. We purified a labeled DcPSKR1 tryptic fragment using anti-PSK antibodies and identified a peptide fragment that corresponds to the 15-amino-acid Glu503-Lys517 region of DcPSKR1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Deletion of Glu503-Lys517 completely abolishes the ligand binding activity of DcPSKR1. This region is in the island domain flanked by extracellular LRRs, indicating that this domain forms a ligand binding pocket that directly interacts with PSK.


Science | 2002

An LRR Receptor Kinase Involved in Perception of a Peptide Plant Hormone, Phytosulfokine

Yoshikatsu Matsubayashi; Mari Ogawa; Akiko Morita; Youji Sakagami


Chemical Record | 2006

Identification and functional characterization of phytosulfokine receptor using a ligand-based approach

Yoshikatsu Matsubayashi; Hidefumi Shinohara; Mari Ogawa


Journal of Peptide Science | 2004

Plant peptide hormone phytosulfokine (PSK‐α): synthesis of new analogues and their biological evaluation

Agata Bahyrycz; Yoshikatsu Matsubayashi; Mari Ogawa; Youji Sakagami; Danuta Konopińska


Journal of Peptide Science | 2005

Further analogues of plant peptide hormone phytosulfokine‐α (PSK‐α) and their biological evaluation

Agata Bahyrycz; Yoshikatsu Matsubayashi; Mari Ogawa; Youji Sakagami; Danuta Konopińska

Collaboration


Dive into the Mari Ogawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge