Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiki Kawabe is active.

Publication


Featured researches published by Yoshiki Kawabe.


Nature Biotechnology | 2010

Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization

Tomoyuki Igawa; Shinya Ishii; Tatsuhiko Tachibana; Atsuhiko Maeda; Yoshinobu Higuchi; Shin Shimaoka; Chifumi Moriyama; Tomoyuki Watanabe; Ryoko Takubo; Yoshiaki Doi; Tetsuya Wakabayashi; Akira Hayasaka; Shoujiro Chugai Seiyaku Kabushiki Kaisha Kadono; Takuya Miyazaki; Kenta Haraya; Yasuo Sekimori; Tetsuo Kojima; Yoshiaki Nabuchi; Yoshinori Aso; Yoshiki Kawabe; Kunihiro Hattori

For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibodys lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.


Journal of Pharmacology and Experimental Therapeutics | 2012

Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice

Masayuki Suzuki; Kiyofumi Honda; Masanori Fukazawa; Kazuharu Ozawa; Hitoshi Hagita; Takahiro Kawai; Minako Takeda; Tatsuo Yata; Mio Kawai; Taku Fukuzawa; Takamitsu Kobayashi; Tsutomu Sato; Yoshiki Kawabe; Sachiya Ikeda

Sodium/glucose cotransporter 2 (SGLT2) is the predominant mediator of renal glucose reabsorption and is an emerging molecular target for the treatment of diabetes. We identified a novel potent and selective SGLT2 inhibitor, tofogliflozin (CSG452), and examined its efficacy and pharmacological properties as an antidiabetic drug. Tofogliflozin competitively inhibited SGLT2 in cells overexpressing SGLT2, and Ki values for human, rat, and mouse SGLT2 inhibition were 2.9, 14.9, and 6.4 nM, respectively. The selectivity of tofogliflozin toward human SGLT2 versus human SGLT1, SGLT6, and sodium/myo-inositol transporter 1 was the highest among the tested SGLT2 inhibitors under clinical development. Furthermore, no interaction with tofogliflozin was observed in any of a battery of tests examining glucose-related physiological processes, such as glucose uptake, glucose oxidation, glycogen synthesis, hepatic glucose production, glucose-stimulated insulin secretion, and glucosidase reactions. A single oral gavage of tofogliflozin increased renal glucose clearance and lowered the blood glucose level in Zucker diabetic fatty rats. Tofogliflozin also improved postprandial glucose excursion in a meal tolerance test with GK rats. In db/db mice, 4-week tofogliflozin treatment reduced glycated hemoglobin and improved glucose tolerance in the oral glucose tolerance test 4 days after the final administration. No blood glucose reduction was observed in normoglycemic SD rats treated with tofogliflozin. These findings demonstrate that tofogliflozin inhibits SGLT2 in a specific manner, lowers blood glucose levels by increasing renal glucose clearance, and improves pathological conditions of type 2 diabetes with a low hypoglycemic potential.


British Journal of Pharmacology | 2013

Tofogliflozin, a novel sodium–glucose co‐transporter 2 inhibitor, improves renal and pancreatic function in db/db mice

T Nagata; Taku Fukuzawa; Minako Takeda; Masanori Fukazawa; T Mori; T Nihei; Kiyofumi Honda; Yoshiyuki Suzuki; Yoshiki Kawabe

Although inhibition of renal sodium–glucose co‐transporter 2 (SGLT2) has a stable glucose‐lowering effect in patients with type 2 diabetes, the effect of SGLT2 inhibition on renal dysfunction in type 2 diabetes remains to be determined. To evaluate the renoprotective effect of SGLT2 inhibition more precisely, we compared the effects of tofogliflozin (a specific SGLT2 inhibitor) with those of losartan (an angiotensin II receptor antagonist) on renal function and beta‐cell function in db/db mice.


Journal of Thrombosis and Haemostasis | 2014

Anti-factor IXa/X bispecific antibody (ACE910): hemostatic potency against ongoing bleeds in a hemophilia A model and the possibility of routine supplementation.

Atsushi Muto; Kazutaka Yoshihashi; Minako Takeda; Takehisa Kitazawa; Tetsuhiro Soeda; Tomoyuki Igawa; Yuichiro Sakamoto; Kenta Haraya; Yoshiki Kawabe; Midori Shima; Akira Yoshioka; Kunihiro Hattori

We previously reported that a humanized anti‐factor IXa/X bispecific antibody, hBS23, mimics the function of FVIII even in the presence of FVIII inhibitors, and has preventive hemostatic activity against bleeding in an animal model of acquired hemophilia A. After further molecular engineering of hBS23, we recently identified an improved humanized bispecific antibody, ACE910, for clinical investigation.


Blood | 2014

Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a long-term primate model of acquired hemophilia A

Atsushi Muto; Kazutaka Yoshihashi; Minako Takeda; Takehisa Kitazawa; Tetsuhiro Soeda; Tomoyuki Igawa; Zenjiro Sampei; Taichi Kuramochi; Akihisa Sakamoto; Kenta Haraya; Kenji Adachi; Yoshiki Kawabe; Keiji Nogami; Midori Shima; Kunihiro Hattori

ACE910 is a humanized anti-factor IXa/X bispecific antibody mimicking the function of factor VIII (FVIII). We previously demonstrated in nonhuman primates that a single IV dose of ACE910 exerted hemostatic activity against hemophilic bleeds artificially induced in muscles and subcutis, and that a subcutaneous (SC) dose of ACE910 showed a 3-week half-life and nearly 100% bioavailability, offering support for effective prophylaxis for hemophilia A by user-friendly SC dosing. However, there was no direct evidence that such SC dosing of ACE910 would prevent spontaneous bleeds occurring in daily life. In this study, we newly established a long-term primate model of acquired hemophilia A by multiple IV injections of an anti-primate FVIII neutralizing antibody engineered in mouse-monkey chimeric form to reduce its antigenicity. The monkeys in the control group exhibited various spontaneous bleeding symptoms as well as continuous prolongation of activated partial thromboplastin time; notably, all exhibited joint bleeds, which are a hallmark of hemophilia. Weekly SC doses of ACE910 (initial 3.97 mg/kg followed by 1 mg/kg) significantly prevented these bleeding symptoms; notably, no joint bleeding symptoms were observed. ACE910 is expected to prevent spontaneous bleeds and joint damage in hemophilia A patients even with weekly SC dosing, although appropriate clinical investigation is required.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Lipid Accumulation in Smooth Muscle Cells Under LDL Loading Is Independent of LDL Receptor Pathway and Enhanced by Hypoxic Conditions

Youichiro Wada; Akira Sugiyama; Takashi Yamamoto; Makoto Naito; Noriko Noguchi; Shinji Yokoyama; Maki Tsujita; Yoshiki Kawabe; Mika Kobayashi; Akashi Izumi; Takahide Kohro; Toshiya Tanaka; Hirokazu Taniguchi; Hidenori Koyama; Ken-ichi Hirano; Shizuya Yamashita; Yuji Matsuzawa; Etsuo Niki; Takao Hamakubo; Tatsuhiko Kodama

Objective—The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Methods and Results—Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension–dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor–deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Conclusions—Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.


American Journal of Physiology-endocrinology and Metabolism | 2013

Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats

Takumi Nagata; Masanori Fukazawa; Kiyofumi Honda; Tatsuo Yata; Mio Kawai; Mizuki Yamane; Naoaki Murao; Koji Yamaguchi; Motohiro Kato; Tetsuya Mitsui; Yoshiyuki Suzuki; Sachiya Ikeda; Yoshiki Kawabe

To understand the risk of hypoglycemia associated with urinary glucose excretion (UGE) induced by sodium-glucose cotransporter (SGLT) inhibitors, it is necessary to know the relationship between the ratio of contribution of SGLT2 vs. SGLT1 to renal glucose reabsorption (RGR) and the glycemic levels in vivo. To examine the contributions of SGLT2 and SGLT1 in normal rats, we compared the RGR inhibition by tofogliflozin, a highly specific SGLT2 inhibitor, and phlorizin, an SGLT1 and SGLT2 (SGLT1/2) inhibitor, at plasma concentrations sufficient to completely inhibit rat SGLT2 (rSGLT2) while inhibiting rSGLT1 to different degrees. Under hyperglycemic conditions by glucose titration, tofogliflozin and phlorizin achieved ≥50% inhibition of RGR. Under hypoglycemic conditions by hyperinsulinemic clamp, RGR was reduced by 20-50% with phlorizin and by 1-5% with tofogliflozin, suggesting the smaller contribution of rSGLT2 to RGR under hypoglycemic conditions than under hyperglycemic conditions. Next, to evaluate the hypoglycemic potentials of SGLT1/2 inhibition, we measured the plasma glucose (PG) and endogenous glucose production (EGP) simultaneously after UGE induction by SGLT inhibitors. Tofogliflozin (400 ng/ml) induced UGE of about 2 mg·kg⁻¹·min⁻¹ and increased EGP by 1-2 mg·kg⁻¹·min⁻¹, resulting in PG in the normal range. Phlorizin (1,333 ng/ml) induced UGE of about 6 mg·kg⁻¹·min⁻¹ and increased EGP by about 4 mg·kg⁻¹·min⁻¹; this was more than with tofogliflozin, but the minimum PG was lower. These results suggest that the contribution of SGLT1 to RGR is greater under lower glycemic conditions than under hyperglycemic conditions and that SGLT2-selective inhibitors pose a lower risk of hypoglycemia than SGLT1/2 inhibitors.


Thrombosis and Haemostasis | 2017

Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens

Takehisa Kitazawa; Keiko Esaki; Tatsuhiko Tachibana; Shinya Ishii; Tetsuhiro Soeda; Atsushi Muto; Yoshiki Kawabe; Tomoyuki Igawa; Hiroyuki Tsunoda; Keiji Nogami; Midori Shima; Kunihiro Hattori

Summary Emicizumab, a humanised bispecific antibody recognising factors (F) IX/IXa and X/Xa, can accelerate FIXa-catalysed FX activation by bridging FIXa and FX in a manner similar to FVIIIa. However, details of the emicizumab–antigen interactions have not been reported so far. In this study, we first showed by surface plasmon resonance analysis that emicizumab bound FIX, FIXa, FX, and FXa with moderate affinities ( K D = 1.58, 1.52, 1.85, and 0.978 μM, respectively). We next showed by immunoblotting analysis that emicizumab recognised the antigens’ epidermal growth factor (EGF)-like domains. We then performed K D -based simulation of equilibrium states in plasma for quantitatively predicting the ways that emicizumab would interact with the antigens. The simulation predicted that only a small part of plasma FIX, FX, and emicizumab would form antigen-bridging FIX–emicizumab–FX ternary complex, of which concentration would form a bell-shaped relationship with emicizumab concentration. The bell-shaped concentration dependency was reproduced by plasma thrombin generation assays, suggesting that the plasma concentration of the ternary complex would correlate with emicizumab’s cofactor activity. The simulation also predicted that at 10.0–100 μg/ml of emicizumab–levels shown in a previous study to be clinically effective–the majority of plasma FIX, FX, and emicizumab would exist as monomers. In conclusion, emicizumab binds FIX/FIXa and FX/FXa with micromolar affinities at their EGF-like domains. The K D -based simulation predicted that the antigen-bridging ternary complex formed in circulating plasma would correlate with emicizumab’s cofactor activity, and the majority of FIX and FX would be free and available for other coagulation reactions. Institution where the work was carried out: Research Division, Chugai Pharmaceutical Co., Ltd. Supplementary Material to this article is available online at www.thrombosis-online.com.


Clinical and Experimental Pharmacology and Physiology | 2008

Mitemcinal (GM-611), an orally active motilin receptor agonist, improves delayed gastric emptying in a canine model of diabetic gastroparesis.

Mitsu Onoma; Ken-ichi Ozaki; Kenji Yogo; Makoto Monnai; Hiroyasu Muramatsu; Kenshi Kamei; Yoshiki Kawabe; Shuji Hayashi; Toshihiko Shiga; Saori Matsuo; Masami Suzuki; Zen Itoh; Satoshi Ōmura; Hisanori Takanashi

1 The aim of the present study was to evaluate the effects of mitemcinal (GM‐611), an orally active motilin receptor agonist, on delayed gastric emptying in a canine model of diabetic gastroparesis and to compare these effects with those of cisapride. 2 Moderate hyperglycaemia was induced by a single intravenous injection of a mixture of streptozotocin (30 mg/kg) and alloxan (50 mg/kg). Dogs that maintained moderate hyperglycaemia (fasting plasma glucose 200–300 mg/dL) without insulin treatment were selected and gastric emptying in these dogs was determined by the paracetamol method. 3 One year after the onset of diabetes, there was no difference in the gastric emptying of normal and diabetic dogs. However, after 5 years, the diabetic dogs showed delayed gastric emptying. The motor nerve conduction velocity of the tibial nerve was significantly lower in diabetic dogs comapred with normal dogs at both time points. 4 Histopathological examination at the end of the study showed that there were fewer nerve fibres in both dorsal vagal and tibial nerves of diabetic dogs comapred with normal dogs. The onset of delayed gastric emptying is thought to have occurred gradually, in parallel with abnormal autonomic nerve function induced by the long period of moderate hyperglycaemia. 5 Oral administration of mitemcinal (0.125, 0.25 or 0.5 mg/kg) dose‐dependently accelerated delayed gastric emptying, significant at 0.5 mg/kg, in diabetic dogs, whereas cisapride (1, 3 or 10 mg/kg) had no significant effect. These results add to the existing evidence that mitemcinal is likely to be useful for treating diabetic gastroparesis.


Scientific Reports | 2017

Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases.

Taku Fukuzawa; Zenjiro Sampei; Kenta Haraya; Yoshinao Ruike; Meiri Shida-Kawazoe; Yuichiro Shimizu; Siok Wan Gan; Machiko Irie; Yoshinori Tsuboi; Hitoshi Tai; Tetsushi Sakiyama; Akihisa Sakamoto; Shinya Ishii; Atsuhiko Maeda; Yuki Iwayanagi; Norihito Shibahara; Mitsuko Shibuya; Genki Nakamura; Takeru Nambu; Akira Hayasaka; Futa Mimoto; Yuu Okura; Yuji Hori; Kiyoshi Habu; Manabu Wada; Takaaki Miura; Tatsuhiko Tachibana; Kiyofumi Honda; Hiroyuki Tsunoda; Takehisa Kitazawa

Dysregulation of the complement system is linked to the pathogenesis of a variety of hematological disorders. Eculizumab, an anti-complement C5 monoclonal antibody, is the current standard of care for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). However, because of high levels of C5 in plasma, eculizumab has to be administered biweekly by intravenous infusion. By applying recycling technology through pH-dependent binding to C5, we generated a novel humanized antibody against C5, SKY59, which has long-lasting neutralization of C5. In cynomolgus monkeys, SKY59 suppressed C5 function and complement activity for a significantly longer duration compared to a conventional antibody. Furthermore, epitope mapping by X-ray crystal structure analysis showed that a histidine cluster located on C5 is crucial for the pH-dependent interaction with SKY59. This indicates that the recycling effect of SKY59 is driven by a novel mechanism of interaction with its antigen and is distinct from other known pH-dependent antibodies. Finally, SKY59 showed neutralizing effect on C5 variant p.Arg885His, while eculizumab does not inhibit complement activity in patients carrying this mutation. Collectively, these results suggest that SKY59 is a promising new anti-C5 agent for patients with PNH and other complement-mediated disorders.

Collaboration


Dive into the Yoshiki Kawabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osamu Cynshi

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsukasa Suzuki

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Kiyofumi Honda

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Minako Takeda

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshige Itakura

Ibaraki Christian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge