Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimi Tsuda is active.

Publication


Featured researches published by Yoshimi Tsuda.


Journal of Virology | 2007

Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines

Takayuki Abe; Yuuki Kaname; Itsuki Hamamoto; Yoshimi Tsuda; Xiaoyu Wen; Shuhei Taguwa; Kohji Moriishi; Osamu Takeuchi; Taro Kawai; Tatsuya Kanto; Norio Hayashi; Shizuo Akira; Yoshiharu Matsuura

ABSTRACT Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries; however, the mechanism through which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) play a pivotal role in the recognition of viral infection and the induction of innate and adaptive immune responses. Several reports suggest that HCV infection induces the dysfunction of DCs in patients with chronic hepatitis C. Toll-like receptor (TLR) has been shown to play various roles in many viral infections; however, the involvement of HCV proteins in the TLR signaling pathway has not yet been precisely elucidated. In this study, we established mouse macrophage cell lines stably expressing HCV proteins and determined the effect of HCV proteins on the TLR signaling pathways. Immune cells expressing NS3, NS3/4A, NS4B, or NS5A were found to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9 signaling pathways. Various genotypes of NS5A bound to MyD88, a major adaptor molecule in TLR, inhibited the recruitment of interleukin-1 receptor-associated kinase 1 to MyD88, and impaired cytokine production in response to TLR ligands. Amino acid residues 240 to 280, previously identified as the interferon sensitivity-determining region (ISDR) in NS5A, interacted with the death domain of MyD88, and the expression of a mutant NS5A lacking the ISDR partially restored cytokine production. These results suggest that the expression of HCV proteins modulates the TLR signaling pathway in immune cells.


Cell Host & Microbe | 2013

Mutual Antagonism between the Ebola Virus VP35 Protein and the RIG-I Activator PACT Determines Infection Outcome

Priya Luthra; Parameshwaran Ramanan; Chad E. Mire; Carla Weisend; Yoshimi Tsuda; Benjamin Yen; Gai Liu; Daisy W. Leung; Thomas W. Geisbert; Hideki Ebihara; Gaya K. Amarasinghe; Christopher F. Basler

The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection.


Journal of Virology | 2011

Pandemic Swine-Origin H1N1 Influenza A Virus Isolates Show Heterogeneous Virulence in Macaques

David Safronetz; Barry Rockx; Friederike Feldmann; Sarah E. Belisle; Robert E. Palermo; Douglas Brining; Don Gardner; Sean Proll; Andrea Marzi; Yoshimi Tsuda; Rachel LaCasse; Lisa Kercher; Anthony York; Marcus J. Korth; Dan Long; Rebecca Rosenke; W. Lesley Shupert; Celia Alpuche Aranda; John S. Mattoon; Darwyn Kobasa; Gary P. Kobinger; Yan Li; Jeffery K. Taubenberger; Jürgen A. Richt; Michael J. Parnell; Hideki Ebihara; Yoshihiro Kawaoka; Michael G. Katze; Heinz Feldmann

ABSTRACT The first influenza pandemic of the new millennium was caused by a newly emerged swine-origin influenza virus (SOIV) (H1N1). This new virus is characterized by a previously unknown constellation of gene segments derived from North American and Eurasian swine lineages and the absence of common markers predictive of human adaptation. Overall, human infections appeared to be mild, but an alarming number of young individuals presented with symptoms atypical for seasonal influenza. The new SOIV also showed a sustained human-to-human transmissibility and higher reproduction ratio than common seasonal viruses, altogether indicating a higher pathogenic potential for this newly emerged virus. To study the virulence of the SOIV, we used a recently established cynomolgus macaque model and compared parameters of clinical disease, virology, host responses, and pathology/histopathology with a current seasonal H1N1 virus. We here show that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia that was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain. Unexpectedly, we observed heterogeneity among the two SOIV isolates in virus replication, host transcriptional and cytokine responses, and disease progression, demonstrating a higher pathogenic potential for A/Mexico/InDRE4487/2009. Differences in virulence may explain more severe disease, as was seen with certain individuals infected with the emerged pandemic influenza virus. Thus, the nonhuman primate model closely mimics influenza in humans.


Virology | 2010

Characterization of H5N1 highly pathogenic avian influenza virus strains isolated from migratory waterfowl in Mongolia on the way back from the southern Asia to their northern territory

Yoshihiro Sakoda; Sengee Sugar; Damdinjav Batchluun; Tseren-Ochir Erdene-Ochir; Masatoshi Okamatsu; Norikazu Isoda; Kosuke Soda; Hiroki Takakuwa; Yoshimi Tsuda; Naoki Yamamoto; Noriko Kishida; Keita Matsuno; Eri Nakayama; Masahiro Kajihara; Ayaka Yokoyama; Ayato Takada; Ruuragchaa Sodnomdarjaa; Hiroshi Kida

H5N1 highly pathogenic avian influenza (HPAI) viruses were isolated from dead wild waterfowl at Khunt, Erkhel, Doityn Tsagaan, Doroo, and Ganga Lakes in Mongolia in July 2005, May 2006, May 2009, July 2009, and May 2010, respectively. The isolates in 2005 and 2006 were classified into genetic clade 2.2, and those in 2009 and 2010 into clade 2.3.2. A/whooper swan/Mongolia/6/2009 (H5N1) experimentally infected ducks and replicated systemically with higher mortality than that of the isolates in 2005 and 2006. Intensive surveillance of avian influenza in migratory waterfowl flying from their nesting lakes in Siberia to Mongolia in every autumn indicate that HPAI viruses have not perpetuated at their nesting lakes until 2009. The present results demonstrate that wild waterfowl were sporadically infected with H5N1 HPAI viruses prevailing in domestic poultry in the southern Asia and died in Mongolia on the way back to their northern territory in spring.


Journal of Virology | 2009

PB2 Protein of a Highly Pathogenic Avian Influenza Virus Strain A/chicken/Yamaguchi/7/2004 (H5N1) Determines Its Replication Potential in Pigs

Rashid Manzoor; Yoshihiro Sakoda; Naoki Nomura; Yoshimi Tsuda; Hiroichi Ozaki; Masatoshi Okamatsu; Hiroshi Kida

ABSTRACT It has been shown that not all but most of the avian influenza viruses replicate in the upper respiratory tract of pigs (H. Kida et al., J. Gen. Virol. 75:2183-2188, 1994). It was shown that A/chicken/Yamaguchi/7/2004 (H5N1) [Ck/Yamaguchi/04 (H5N1)] did not replicate in pigs (N. Isoda et al., Arch. Virol. 151:1267-1279, 2006). In the present study, the genetic basis for this host range restriction was determined using reassortant viruses generated between Ck/Yamaguchi/04 (H5N1) and A/swine/Hokkaido/2/1981 (H1N1) [Sw/Hokkaido/81 (H1N1)]. Two in vivo-generated single-gene reassortant virus clones of the H5N1 subtype (virus clones 1 and 2), whose PB2 gene was of Sw/Hokkaido/81 (H1N1) origin and whose remaining seven genes were of Ck/Yamaguchi/04 (H5N1) origin, were recovered from the experimentally infected pigs. The replicative potential of virus clones 1 and 2 was further confirmed by using reassortant virus (rg-Ck-Sw/PB2) generated by reverse genetics. Interestingly, the PB2 gene of Ck/Yamaguchi/04 (H5N1) did not restrict the replication of Sw/Hokkaido/81 (H1N1), as determined by using reassortant virus rg-Sw-Ck/PB2. The rg-Sw-Ck/PB2 virus replicated to moderate levels and for a shorter duration than parental Sw/Hokkaido/81 (H1N1). Sequencing of two isolates recovered from the pigs inoculated with rg-Sw-Ck/PB2 revealed either the D256G or the E627K amino acid substitution in the PB2 proteins of the isolates. The D256G and E627K mutations enhanced viral polymerase activity in the mammalian cells, correlating with replication of virus in pigs. These results indicate that the PB2 protein restricts the growth of Ck/Yamaguchi/04 (H5N1) in pigs.


PLOS Neglected Tropical Diseases | 2011

A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus

Yoshimi Tsuda; Patrizia Caposio; Christopher J. Parkins; Sara Botto; Ilhem Messaoudi; Luka Cicin-Sain; Heinz Feldmann; Michael A. Jarvis

Background Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.


Microbiology and Immunology | 2006

Nucleolar Protein B23 Interacts with Japanese Encephalitis Virus Core Protein and Participates in Viral Replication

Yoshimi Tsuda; Yoshio Mori; Takayuki Abe; Tetsuo Yamashita; Toru Okamoto; Tohru Ichimura; Kohji Moriishi; Yoshiharu Matsuura

Japanese encephalitis virus (JEV) core protein is detected not only in the cytoplasm but also in the nucleoli of infected cells. We previously showed that a mutant JEV lacking the nucleolar localization of the core protein impaired viral replication in mammalian cells. In this study, we identified a nucleolar phosphoprotein B23 as a protein binding with the core protein of JEV but not with that of dengue virus. The region binding with JEV core protein was mapped to amino acid residues 38 to 77 of B23. Upon JEV infection, some fraction of B23 was translocated from the nucleoli to the cytoplasm, and cytoplasmic B23 was colocalized with the core protein of wild‐type JEV but not with that of the mutant JEV. Furthermore, overexpression of dominant negatives of B23 reduced JEV replication. These results suggest that B23 plays an important role in the intracellular localization of the core protein and replication of JEV.


Microbiology and Immunology | 2007

Development of an Immunochromatographic Kit for Rapid Diagnosis of H5 Avian Influenza Virus Infection

Yoshimi Tsuda; Yoshihiro Sakoda; Saori Sakabe; Tsuyoshi Mochizuki; Yasuharu Namba; Hiroshi Kida

Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti‐H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI.


The Journal of Infectious Diseases | 2011

Protective Efficacy of a Bivalent Recombinant Vesicular Stomatitis Virus Vaccine in the Syrian Hamster Model of Lethal Ebola Virus Infection

Yoshimi Tsuda; David Safronetz; Kyle E. Brown; Rachel LaCasse; Andrea Marzi; Hideki Ebihara; Heinz Feldmann

BACKGROUND Outbreaks of filoviral hemorrhagic fever occur sporadically and unpredictably across wide regions in central Africa and overlap with the occurrence of other infectious diseases of public health importance. METHODS As a proof of concept we developed a bivalent recombinant vaccine based on vesicular stomatitis virus (VSV) expressing the Zaire ebolavirus (ZEBOV) and Andes virus (ANDV) glycoproteins (VSVΔG/Dual) and evaluated its protective efficacy in the common lethal Syrian hamster model. Hamsters were vaccinated with VSVΔG/Dual and were lethally challenged with ZEBOV or ANDV. Time to immunity and postexposure treatment were evaluated by immunizing hamsters at different times prior to and post ZEBOV challenge. RESULTS A single immunization with VSVΔG/Dual conferred complete and sterile protection against lethal ZEBOV and ANDV challenge. Complete protection was achieved with an immunization as close as 3 days prior to ZEBOV challenge, and 40% of the animals were even protected when treated with VSVΔG/Dual one day postchallenge. In comparison to the monovalent VSV vaccine, the bivalent vaccine has slightly reduced postexposure efficacy most likely due to its restricted lymphoid organ replication. CONCLUSIONS Bivalent VSV vectors are a feasible approach to vaccination against multiple pathogens.


Virus Genes | 2008

Phylogenic analysis of the M genes of influenza viruses isolated from free-flying water birds from their Northern Territory to Hokkaido, Japan

Rashid Manzoor; Yoshihiro Sakoda; Aaron Mweene; Yoshimi Tsuda; Noriko Kishida; Gui-Rong Bai; Ken-ichiro Kameyama; Norikazu Isoda; Kosuke Soda; Michiko Naito; Hiroshi Kida

During 2000–2007, 218 influenza viruses of 28 different combinations of HA (H1–H13) and NA (N1–N9) subtypes were isolated from fecal samples of free-flying water birds at two distant lakes in Hokkaido, Japan. Phylogenic analysis of the matrix (M) genes of 67 strains, selected on the basis of their subtype combinations, revealed that A/duck/Hokkaido/W95/2006 (H10N8) was a reassortant whose M gene belonged to North American non-gull-avian and the other seven genes to Eurasian non-gull-avian lineages. The M genes of other 65 strains belonged to Eurasian non-gull-avian and the one to Eurasian-gull lineages. The M genes of 65 strains were grouped into three different sublineages, indicating that influenza viruses circulating in different populations of free-flying water birds have evolved independently in nature.

Collaboration


Dive into the Yoshimi Tsuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Ebihara

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge