Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshinori Hinokio is active.

Publication


Featured researches published by Yoshinori Hinokio.


Nature Genetics | 2000

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Yukio Horikawa; Naohisa Oda; Nancy J. Cox; Xiangquan Li; Marju Orho-Melander; Manami Hara; Yoshinori Hinokio; Tom H. Lindner; Hirosato Mashima; Peter Schwarz; Laura del Bosque-Plata; Yohko Horikawa; Yukie Oda; Issei Yoshiuchi; Susan Colilla; Kenneth S. Polonsky; Shan Wei; Patrick Concannon; Naoko Iwasaki; Jan Schulze; Leslie J. Baier; Clifton Bogardus; Leif Groop; Eric Boerwinkle; Craig L. Hanis; Graeme I. Bell

Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the worlds adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.


Nature Genetics | 2008

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus

Kazuki Yasuda; Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Hiroyuki Mori; Anna Maria Jönsson; Yoshifumi Sato; Kazuya Yamagata; Yoshinori Hinokio; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Jun Takeda; Eiichi Maeda; Hyoung Doo Shin; Young Min Cho; Kyong Soo Park; Hong Kyu Lee; Maggie C.Y. Ng; Ronald C.W. Ma

We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest P value (6.7 × 10−13, odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 × 10−42 (OR = 1.40; 95% CI = 1.34–1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of β-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.


Diabetologia | 1999

Oxidative DNA damage in diabetes mellitus : its association with diabetic complications

Yoshinori Hinokio; Susumu Suzuki; Masashi Hirai; Masaki Chiba; Aki Hirai; Takayoshi Toyota

Aims/hypothesis. Augmented oxidative stress induced by hyperglycaemia possibly contributes to the pathogenesis of diabetic complications. Oxidative stress is known to increase the conversion of deoxyguanosine to 8-oxo, 2 ′-deoxyguanosine in DNA. To investigate the possible contribution of oxidative DNA damage to the pathogenesis of diabetic complications, we measured the content of 8-oxo, 2 ′-deoxyguanosine in the urine and the blood mononuclear cells of Type II (non-insulin-dependent) diabetic patients. Methods. We studied 53 Type II diabetic patients and 39 age-matched healthy control subjects. We assayed 8-oxo, 2 ′-deoxyguanosine by HPLC-electrochemical detection method. Results. The content of 8-oxo, 2 ′-deoxyguanosine in the urine and the mononuclear cells of the Type II diabetic patients was much higher than that of the control subjects. Urinary 8-oxo, 2 ′-deoxyguanosine excretion and the 8-oxo, 2 ′-deoxyguanosine content in the mononuclear cells from the diabetic patients with complications were higher than those from the diabetic patients without complications. Urinary excretion of 8-oxo, 2 ′-deoxyguanosine was significantly correlated with the 8-oxo, 2 ′-deoxyguanosine content in the mononuclear cells. The 8-oxo, 2 ′-deoxyguanosine content in the urine and mononuclear cells was correlated with the haemoglobin A1 c value. Conclusion/interpretation. This is the first report of a direct association between oxidative DNA damage and the complications of diabetes. The augmented oxidative DNA damage in diabetes is speculated to contribute to the pathogenesis of diabetic complications. [Diabetologia (1999) 42: 995–998]


The Journal of Clinical Endocrinology and Metabolism | 2008

Replication of Genome-Wide Association Studies of Type 2 Diabetes Susceptibility in Japan

Yukio Horikawa; Kazuaki Miyake; Kazuki Yasuda; Mayumi Enya; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Masato Kasuga

BACKGROUND In Europeans and populations of European origin, several groups have recently identified novel type 2 diabetes susceptibility genes, including FTO, SLC30A8, HHEX, CDKAL1, CDKN2B, and IGF2BP2, none of which were in the list of functional candidates. OBJECTIVE AND DESIGN The aim of this study was to replicate in a Japanese population previously identified associations of single nucleotide polymorphisms (SNPs) within 10 candidate loci with type 2 diabetes using a relatively large sample size: 1921 subjects with type 2 diabetes and 1622 normal controls. RESULTS A total of 15 SNPs were genotyped. Eight SNPs in five loci were found to be associated with type 2 diabetes: rs3802177 [odds ratio (OR) = 1.16 (95% confidence interval (CI) 1.05-1.27); P = 4.5 x 10(-3)] in SLC30A8; rs1111875 [OR = 1.27 (95% CI 1.14-1.40); P = 1.4 x 10(-5)] and rs7923837 [OR = 1.27 (95% CI 1.13-1.43); P = 1.0 x 10(-4)] in HHEX; rs10811661 [OR = 1.27 (95% CI 1.15-1.40); P = 1.9 x 10(-6)] in CDKN2B; rs4402960 [OR = 1.23 (95% CI 1.11-1.36); P = 8.1 x 10(-5)] and rs1470579 [OR = 1.18 (95% CI 1.07-1.31); P = 8.3 x 10(-4)] in IGF2BP2; and rs7754840 [OR = 1.28 (95% CI 1.17-1.41); P = 4.5 x 10(-7)] and rs7756992 [OR = 1.27 (95% CI 1.15-1.40); P = 9.8 x 10(-7)] in CDKAL1. The first and second strongest associations were found at variants in CDKAL1 and CDKN2B, both of which are involved in the regenerative capacity of pancreatic beta-cells. CONCLUSION Some of these variants represent common type 2 diabetes-susceptibility genes in both Japanese and Europeans.


Diabetes Research and Clinical Practice | 1999

Oxidative damage to mitochondrial DNA and its relationship to diabetic complications

Susumu Suzuki; Yoshinori Hinokio; Koga Komatu; Masataka Ohtomo; Masatoshi Onoda; Satoshi Hirai; Masashi Hirai; Aki Hirai; Masaki Chiba; Shigeru Kasuga; Hiroaki Akai; Takayoshi Toyota

Increased oxidative stress induced by hyperglycemia may contribute to the pathogenesis of diabetic complications. Oxidative stress is known to increase the conversion of deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OHdG) in DNA, which is linked to increased mitochondrial DNA (mtDNA) deletions. We investigated mtDNA deletions and 8-OHdG in the muscle DNA of non-insulin-dependent diabetes mellitus (NIDDM) patients. mtDNA deletion of 4977 bp (delta mtDNA4977) and the content of 8-OHdG in the muscle DNA of the NIDDM patients were much higher than those of the control subjects. There was a significant correlation between delta mtDNA4977 and the 8-OHdG content (P < 0.0001). Both delta mtDNA4977 and the 8-OHdG content were also correlated with the duration of diabetes. Delta mtDNA4977 and the 8-OHdG content in muscle DNA increased in proportion to the severity of diabetic nephropathy and retinopathy. This is the first report that an increase in delta mtDNA4977 and 8-OHdG is proportional to the severity of diabetic complications. Oxidative mtDNA damage is speculated to contribute to the pathogenesis of diabetic complications though a defect in mitochondrial oxidative phosphorylation or other mechanisms. 8-OHdG and delta mtDNA4977 are useful markers to evaluate oxidative mtDNA damage in the diabetic patients.


Diabetologia | 2002

Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy

Yoshinori Hinokio; Susumu Suzuki; Masashi Hirai; Chitose Suzuki; M. Suzuki; Takayoshi Toyota

AbstractAims/hypothesis. The increased oxidative stress in diabetes is known to contribute to the progression of diabetes and its complications. We have reported a significant relation between the content of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a product of oxidative DNA damage in urine or leukocytes and the severity of diabetic nephropathy and retinopathy [1]. We investigated whether 8-oxodG in urine or leukocytes is associated with the progression of diabetic nephropathy. Methods.We measured urinary 8-oxodG contents at entry and carried out a prospective longitudinal study to assess the progression of nephropathy over 5 years. Results. There was a significant progression of diabetic nephropathy in the patients with higher excretion of 8-oxodG in urine compared with the patients with moderate or lower excretion of 8-oxodG. There was no significant association between the leukocyte 8-oxodG contents and the development of nephropathy. The multivariate logistic regression analysis suggests that the urinary 8-oxodG was the strongest predictor of nephropathy among several known risk factors. Conclusion/interpretation. This study provides evidence that increased oxidative stress has a primary role in the pathogenesis of diabetic nephropathy. A local enhancement of oxidative stress in diabetic kidney might explain the possible linkage between the increased urinary excretion of 8-oxodG and the development of nephropathy. 8-oxodG in urine is a useful clinical marker to predict the development of diabetic nephropathy in diabetic patients.


Diabetologia | 1998

The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation

Susumu Suzuki; Yoshinori Hinokio; Masataka Ohtomo; Masashi Hirai; Aki Hirai; Masaki Chiba; Shigeru Kasuga; Yoshinori Satoh; Hiroaki Akai; Takayoshi Toyota

Summary The characteristic clinical features of diabetes mellitus with mitochondrial DNA (mtDNA) 3243(A-G) mutation are progressive insulin secretory defect, neurosensory deafness and maternal inheritance, referred to as maternally inherited diabetes mellitus and deafness (MIDD). A treatment for MIDD to improve insulin secretory defects and reduce deafness has not been established. The effects of coenzyme Q10 (CoQ10) treatment on insulin secretory response, hearing capacity and clinical symptoms of MIDD were investigated. 28 MIDD patients (CoQ10-DM), 7 mutant subjects with impaired glucose tolerance (IGT), and 15 mutant subjects with normal glucose tolerance (NGT) were treated daily with oral administration of 150 mg of CoQ10 for 3 years. Insulin secretory response, blood lactate after exercise, hearing capacity and other laboratory examinations were investigated every year. In the same way we evaluated 16 MIDD patients (control-DM), 5 mutant IGT and 5 mutant NGT subjects in yearly examinations. The insulin secretory response assessed by glucagon-induced C-peptide secretion and 24 h urinary C-peptide excretion after 3 years in the CoQ10-DM group was significantly higher than that in the control-DM group. CoQ10 therapy prevented progressive hearing loss and improved blood lactate after exercise in the MIDD patients. CoQ10 treatment did not affect the diabetic complications or other clinical symptoms of MIDD patients. CoQ10 treatment did not affect the insulin secretory capacity of the mutant IGT and NGT subjects. There were no side effects during therapy. This is the first report demonstrating the therapeutic usefulness of CoQ10 on MIDD. [Diabetologia (1998) 41: 584–588]


Diabetes | 1997

Mutations in the hepatocyte nuclear factor-1alpha/MODY3 gene in Japanese subjects with early- and late-onset NIDDM

Naoko Iwasaki; Naohisa Oda; Makiko Ogata; Manami Hara; Yoshinori Hinokio; Yukie Oda; Kazuya Yamagata; Sachiko Kanematsu; Hisako Ohgawara; Yasue Omori; Graeme I. Bell

Recent studies have shown that mutations in the hepatocyte nuclear factor (HNF)-1α gene are the cause of maturity-onset diabetes of the young type 3 (MODY3). We have screened 193 unrelated Japanese subjects with NIDDM for mutations in this gene: 83 with early-onset NIDDM (diagnosis at <30 years of age) and 110 with late-onset NIDDM (diagnosis >30 years of age). All of the members of the latter group also had at least one sibling with NIDDM. The 10 exons, flanking introns, and promoter region were amplified using polymerase chain reaction and were sequenced directly. Mutations were found in 7 of the 83 (8%) unrelated subjects with early-onset NIDDM. The mutations were each different and included four missense mutations (L12H, R131Q, K205Q, and R263C) and three frameshift mutations (P379fsdelCT, T392fsdelA, and L584S585fsinsTC). One of the 110 subjects with late-onset NIDDM was heterozygous for the missense mutation G191D. This subject, who was diagnosed with NIDDM at 64 years of age, also had a brother with NIDDM (age at diagnosis, 54 years) who carried the same mutation, suggesting that this mutation contributed to the development of NIDDM in these two siblings. None of these mutations were present in 50 unrelated subjects with normal glucose tolerance (100 normal chromosomes). Mutations in the HNF-1α gene occur in Japanese subjects with NIDDM and appear to be an important cause of early-onset NIDDM in this population. In addition, they are present in about 1% of subjects with late-onset NIDDM.


Psychiatry and Clinical Neurosciences | 2007

Reliability and validity of the Japanese version of the World Health Organization-Five Well-Being Index in the context of detecting depression in diabetic patients.

Shuichi Awata; Per Bech; Sumiko Yoshida; Masashi Hirai; Susumu Suzuki; Motoyasu Yamashita; Arihisa Ohara; Yoshinori Hinokio; Hiroo Matsuoka; Yoshitomo Oka

Abstract  The present study had two aims. The first was to evaluate the reliability and the validity of the Japanese version of the World Health Organization (WHO)‐Five Well‐Being Index (WHO‐5‐J) as a brief well‐being scale. The second was to examine the discriminatory validity of this test as a screening tool for current depressive episodes in diabetic patients. A sample of 129 diabetic patients completed the WHO‐5‐J. Of these, 65 were also interviewed by psychiatrists to assess whether they had any current depressive episodes according to DSM‐IV. The internal consistency was evaluated using Cronbach’s alpha, the Loevinger coefficient of homogeneity, and factor analysis. The external concurrent validity was evaluated by correlations with the external scales potentially related to subjective well‐being. Discriminatory validity was evaluated using receiver operating characteristic (ROC) analysis. Cronbach’s alpha and the Loevinger coefficient were estimated to be 0.89 and 0.65, respectively. A factor analysis identified only one factor. The WHO‐5‐J was significantly correlated with a number of major diabetic complications, depression, anxiety, and subjective quality of life. ROC analysis showed that the WHO‐5‐J can be used to detect a current depressive episode (area under curve: 0.92; 95% confidence interval: 0.85–0.98). A cut‐off of <13 yielded the best sensitivity/specificity trade‐off: sensitivity, 100%; specificity, 78%. The WHO‐5‐J was thus found to have a sufficient reliability and validity, indicating that it is a useful instrument for detecting current depressive episodes in diabetic patients.


Journal of Human Genetics | 2008

Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects

Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Kazuki Yasuda; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Hideichi Makino; Kishio Nanjo; Takashi Kadowaki; Kasuga M

AbstractTranscription factor 7-like 2 (TCF7L2) has been shown to be associated with type 2 diabetes mellitus in multiple ethnic groups. Regarding the Asian population, Horikoshi et al. (Diabetologia 50:747–751, 2007) and Hayashi et al. (Diabetologia 50:980–984, 2007) reported that single nucleotide polymorphisms (SNPs) in TCF7L2 were associated with type 2 diabetes in the Japanese population, while contradictory results were reported for Han Chinese populations. The aim of this study was to investigate the associations of the TCF7L2 gene with type 2 diabetes using a relatively large sample size: 2,214 Japanese individuals with type 2 diabetes and 1,873 normal controls. The minor alleles of rs7903146, rs11196205, and rs12255372 showed significant associations with type 2 diabetes (OR = 1.48, P = 2.7 × 10−4; OR = 1.39, P = 4.6 × 10−4; OR = 1.70, P = 9.8 × 10−5, respectively) in the combined sample sets. However, neither rs11196218 nor rs290487 showed a significant association. These results indicate that TCF7L2 is an important susceptibility gene for type 2 diabetes in the Japanese population.

Collaboration


Dive into the Yoshinori Hinokio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge